Lecture 3 – Data & Python & Sequence

Agenda

- o Different data types
- Introduction to Python programming
- o Sequence data
- Sequence comparison and alignment score

Data Types We Will Encounter

- Sequential Data
 - Ex) DNA sequence

NO. OF	-
and a	
	ATGAAAAAGACAGCTATCGCGATTGCAGTGGCACTGGCTGG
	CAGGCGGCCTCTGAGGGAAACAGTGACTGCTACTTTGGGAATGGGTCAGCCTACCG
T	TGGCACGCACAGCCTCACCGAGTCGGGTGCCTCCTGCCTCCCGTGGAATTCCATGAT
	CCTGATAGGCAAGGTTTACACAGCACAGAACCCCAGTGCCCAGGCACTGGGCCTGG
	GCAAACATAATTACTGCCGGAATCCTGATGGGGATGCCAAGCCCTGGTGCCACGTG
C	CTGAAGAACCGCAGGCTGACGTGGGGAGTACTGTGATGTGCCCTCCTGCTCCACCTGC
and a	GGCCTGAGACAGTACAGCCAGCCTCAGTTTCGCATCAAAGGAGGGCTCTTCGCCGA
-	CATCGCCTCCCACCCCTGGCAGGCTGCCATCTTTGCCAAGCACAGGAGGTCGCCCGG
	AGAGCGGTTCCTGTGCGGGGGGCATACTCATCAGCTCCTGCTGGATTCTCTCTGCCGC
	CCACTGCTTCCAGGAGAGGTTTCCGCCCCACCACCTGACGGTGATCTTGGGCAGAAC
	ATACCGGGTGGTCCCTGGCGAGGAGGAGCAGAAAATTTGAAGTCGAAAAATACATTG
	TCCATAAGGAATTCGATGATGACACTTACGACAATGACATTGCGCTGCTGCAGCTGA
-Ch	AATCGGATTCGTCCCGCTGTGCCCAGGAGAGCAGCGTGGTCCGCACTGTGTGCCTTC
- CUT	CCCCGGCGGACCTGCAGCTGCCGGACTGGACGGAGTGTGAGCTCTCCGGCTACGGC
-	AAGCATGAGGCCTTGTCTCCTTTCTATTCGGAGCGGCTGAAGGAGGCTCATGTCAGA
	CTGTACCCATCCAGCCGCTGCACATCACAACATTTACTTAACAGAACAGTCACCGAC
	AACATGCTGTGTGCTGGAGACACTCGGAGCGGCGGGCCCCAGGCAAACTTGCACGA
A started	CGCCTGCCAGGGCGATTCGGGAGGCCCCCTGGTGTGTCTGAACGATGGCCGCATGA
	CTTTGGTGGGCATCATCAGCTGGGGCCTGGGCTGTGGACAGAAGGATGTCCCGGGT
- way	GTGTACACAAAGGTTACCAACTACCTAGACTGGATTCGTGACAACATGCGACCG
manly	(SEQ ID NO:2)
- Martin	

- o Data Matrix
 - Consist of collection of records, each collection made up of a fixed set of attributes
 - Can be represented by [nxm] matrix; n rows for n object, m columns for m attributes
 - If you shuffle the entire column or the entire row at once, you would not change the data

	Person	Height (m)	Weight (kg)	
A 4 by 2 matrix.	P1	1.79	75	
We have 4 people, each with 2	P2	1.64	54	
attributes	Р3	1.70	63	
	P4	1.88	78	

• Spatial Data

- Geographic locations and spatial information

- Temporal Data
 - Data involving time

• Graph or Networks

- Objects and connections (the link)
- Social network and PPI network

- o Text
 - Long, short sentences or documents

- o Multi-Modality Data
 - Video: temporal images, audio, transcript
 - Electronic health records: data matrix, images, text
 - Spatial transcriptomics: spatial data, sequence, data matrix

- Unknown Data Types
 - Data not shown

Python Programming

- Programming
 - communicating with the computer, asking to do something (task)
- \circ Code
 - message we send to the computer
- o Python
 - the software used to send the message + it translates human language to computer language

Writing Python Code

Ex) Calculating mean of some values

```
[1] import numpy
numpy.mean([1,2,3])
2.0
```

- What is NumPy?
 - Additional plug-in to make Python more powerful
 - Load them by *import.numpy* when using
 - Other plug-in: SciPy, Pandas
- What if we want to calculate other things?
 - For example: mean, variance, median, max, min, etc
 - Store the array in a variable to avoid entering them every time

) Os	[2]	<pre>import numpy a = [1,2,3,4,4,5,5,5,6,7,8,9] numpy.mean(a)</pre>
		4.9166666666666666
∨ 0s	[4]	numpy.std(a)
		2.253084305765962
V Os	[5]	numpy.median(a)
		5.0
v Os	[6]	numpy.max(a)
		9
v Os	[8]	print(a)
		[1, 2, 3, 4, 4, 5, 5, 5, 6, 7, 8, 9]

- What is "print"?
 - Asking the computer to print something.
 - If the variable is storing some values, everything in "" will we printed.

```
[9] print("The a array is ", a)
The a array is [1, 2, 3, 4, 4, 5, 5, 5, 6, 7, 8, 9]
```

• Other Example:

```
[18] import numpy
a = [1,2,3,4,4,5,5,5,6,7,8,9]
a_mean = numpy.mean(a)
a_std = numpy.std(a)
a_med = numpy.median(a)
a_max = numpy.meax(a)
[19] print("The a array is ", a, "Its mean is ", a_mean)
The a array is [1, 2, 3, 4, 4, 5, 5, 5, 6, 7, 8, 9] Its mean is 4.91666666666666667
[20] print("The a array is ", a, "Its mean is ", numpy.mean(a))
The a array is [1, 2, 3, 4, 4, 5, 5, 5, 6, 7, 8, 9] Its mean is 4.916666666666667
[20] print("The a array is ", a, "Its mean is ", numpy.mean(a))
The a array is [1, 2, 3, 4, 4, 5, 5, 5, 6, 7, 8, 9] Its mean is 4.91666666666666667
[20] VIII
```

- a_mean = numpy.mean(a): calculate the mean of array a then store the calculated mean into the variable a_mean.

Sequence Data

DNA sequences are where the <u>genetic information</u> is hidden and to understand central dogma thorough study of DNA is needed. Human genotypes are determined by sequences.

- o DNA sequence
 - Composed of A,T,C,G
 - Complementary double strand
 - Approximately 3 billion base pairs

A	Т	G	G	С	Α	С	Т	G	Α
Т	Α	С	С	G	Т	G	Α	С	Т

- RNA sequence
 - Composed of A,U,C,G
 - Single stranded
- o Protein sequence
 - Usually composed of 20 amino acids
 - Multiple sequence alignment

Obtaining Sequences

- DNA/RNA sequencing
 - Under active development
 - From short reads to long reads
- Nanopore Sequencing
 - DNA goes through a chemical pore
 - Different bases \rightarrow electrical current changes
 - Sequence by detecting the current change
 - Can sequence very long samples (up to 3Mb)
 - High error rate (5%)
 - Under active development

- Protein Sequencing (mostly based on mass spectrometry)
 - Break the long sequence into short pieces
 - Each piece can be determined by mass spectrometry
 - It is determined by the weight of each pieces
 - Assemble the short pieces into the raw sequence

Raw Data – What do we do to them?

- DNA sequences
 - Quality control
 - Map reads to reference genome
 - Variant calling
 - Phenotype associated variants
- Protein sequences
 - Sequence comparison
 - Multiple sequence alignment
 - As similar sequence my indicate similar structure which results in similar function
 - Similar sequence may also indicate common ancestor

So how do we compare two sequences?

⇒ Sequence Comparison and Alignment Score

Sequence Alignment

To determine the similarity between sequences and identify regions of similarity

- Why is it important?:
 - For biomolecular function and property prediction
 - For evolution, identifying conservative region, investing mechanism

Sequence Alignment and Sequence Similarity

- Pairwise sequence alignment
 - Arrange two sequence to maximize the similarity between them

- Gap can be inserted in the sequences
- Defining sequence similarity

Match: A <-> A Mismatch (Substitution): G <-> T Gap (Insertion or deletion): C <-> _

- Sequence alignment score
 - Scoring matrix:

	Α	С	G	Т
Α	2	-7	-5	-7
С	-7	2	-7	-5
G	-5	-7	2	-7
Т	-7	-5	-7	2

- Gap penalty: -10

Finding the Best Pairwise Alignment

Known: two sequences, scoring matrix

- Straight Forward solution: Enumeration
 - Enumerate all possible alignments
 - Calculate the scores for all the alignment
 - Find the one with the highest score
- \circ Problem:
 - Too many possible combination
 - Need Dynamic Programming