BMSB3105 Data Analytics for Personalized Genomics and Precision Medicine-Lecture 3

Topic: Data & Python & Sequences

Lecturer: Professor Yu LI (李煜) from CSE Liyu95.com, liyu@cse.cuhk.edu.hk

Date: 13 September 2023, Wednesday

Lecture Outline

- Different data types
- Introduction to Python programming
- Sequence data
- Sequence comparison and alignment score

Different Data Types

- 1. Sequential data
 - Sequences e.g DNA and RNA
- 2. Data matrix
 - Data that consists of a collection of records, each of which consists of a fixed set of attributes
 - Data set can be represented by an n by m matrix, where there are n rows, one for each object, and m columns, one for each attribute
 - **If you shuffle the entire column or the entire row at one time, you would not change the data
 - Example: 4 by 2 matrix: 4 people, each with 2 attributes

Person	Height (m)	Weight (kg)
P1	1.79	75
P2	1.64	54
P3	1.70	63
P4	1.88	78

3. Spatial data

- Geographic locations and spatial information involved
- If you shuffle the entire column or the entire row at one time (image is made of pixels), you would get a different image data
- e.g maps and images

4. Temporal data

- With built-in support for handling data involving time
- E.g ECGs, stocks

5. Graph or networks

- Objects and connections (the link)
- Social network and PPI network

6. Text

- Short sentences
- Long sentences or documents
- 7. Multi-modality data (more than one of the above mentioned data)
 - Video: Temporal images, audio, transcript
 - Electronic health records: Data matrix, images, text
 - Spatial transcriptomics: Spatial data, sequence, data matrix

Introduction to Python Programming

1. Programming

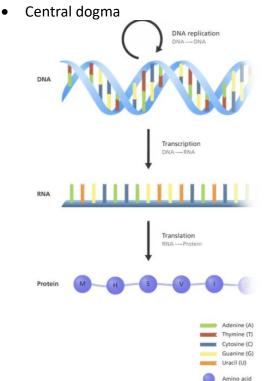
- Wiki: "Computer programming is the process of designing and building an executable computer program to accomplish a specific computing result or to perform a specific task."
- Metaphor: Programming: to communicate with the computer (your friend), asking him/her to do something for you while code is the WhatsApp message you send to the computer (your friend)
- Computer does not understand human language while we do not understand the computer/machine language. Therefore we need a bridge/translator to help us command the computer → we learn programming language

2. Python

- Wiki: Python is an interpreted high-level general-purpose programming language
- Metaphor: the WeChat/WhatsApp software to help us communicate with the computer. E.g calculate mean/ other values

3. Numpy, Scipy, Pandas

- Additional plug-in to make Python more powerful \rightarrow Need to import them first
- Calculate lots of things e.g mean, variance, median, max, min


ຼີ [2]	<pre>import numpy a = [1,2,3,4,4,5,5,5,6,7,8,9]</pre>	01	[9	<pre>)] print("The a array is ", a) </pre>
	numpy.mean(a) 4.916666666666666			The a array is [1, 2, 3, 4, 4, 5, 5, 5, 6, 7, 8, 9]
[4]	numpy.std(a)			
	2.253084305765962	0s	[18]	import numpy a = [1,2,3,4,4,5,5,5,6,7,8,9] a.mean = numpy.mean(a)
ຼ໌ [5]	numpy.median(a)			a_std = numpy.std(a) a med = numpy.median(a)
	5.0			a_max = numpy.max(a)
[6]	numpy.max(a)	* 05	[19]	print("The a array is ", a, "Its mean is ", a_mean)
	9			The a array is [1, 2, 3, 4, 4, 5, 5, 5, 6, 7, 8, 9] Its mean is 4.91666666666666666
[8]	print(a)	* 05	[20]	<pre>print("The a array is ", a, "Its mean is ", numpy.mean(a))</pre>
	[1, 2, 3, 4, 4, 5, 5, 5, 6, 7, 8, 9]			The a array is [1, 2, 3, 4, 4, 5, 5, 5, 6, 7, 8, 9] Its mean is 4.916666666666666666

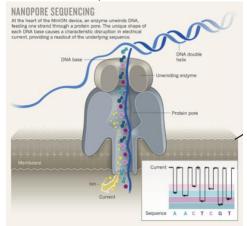
4. Other Important Programming Concepts

- Print(): to show something on the screen, can be used for checking
- Variable is like a box to store some data/values
- Syntax are rules that we need to follow during programming
 - Kind of like Grammar in English

Sequence Data

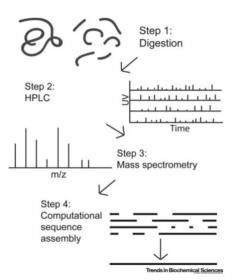
1. Sequence Data Definition

- The genetic information in hidden in DNA sequences
- Phenotype = Genotype (determined by sequences) + Environment

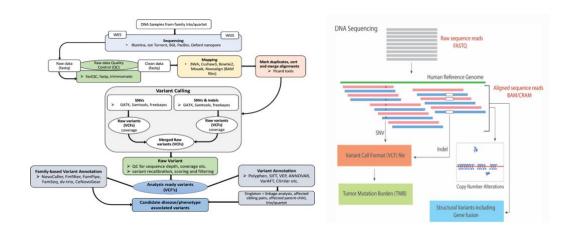

2. Types of Sequence Data

- DNA sequence :
 - Composed of A,T,C,G
 - o Complementary double strand

- Approximately 3 billion of these base pairs
- RNA sequence:
 - Composed of A,U,C,G
 - Single stranded
- Protein sequence:
 - Usually composed of 20 amino acids
 - Multiple sequence alignment


3. Obtaining Sequence Data

- DNA/RNA sequencing:
 - o Still under development
 - From short reads to long reads
 - E.g Sanger sequencing, 2nd Generation sequencer (Genetic Analyzer 2), Third generation sequencer (PacBio RS),
 - Nanospace sequencer:
 - DNA goes through a chemical pore
 - Different bases -> different electrical current change
 - Sequencing by detecting current change
 - Advantages: Very long (up to 3Mb VS 1000bp)
 - Disadvantages: Error rate is high (5% VS 0.001%) → Under active development



- Protein sequencing:
 - Mostly based on mass spectrometry (MS)
 - Break the long sequence into short pieces
 - Each piece can be determined by MS
 - Determined by the weight of each piece

• Assemble the short pieces into the raw sequence (like jigsaw puzzle)

- 4. Making Use of Sequence Data:
 - DNA sequences:
 - o Quality check of DNA sequences to remove noises
 - Compare the sequence to the reference genome
 - Variant calling
 - Compare if the sequences are phenotype associated variants

- Protein sequences:
 - o Sequence comparison
 - Multiple sequence alignment
 - Similar sequence -> Similar structure -> Similar function (The "Sequence- to-Structure-to-Function Paradigm")
 - Similar sequence -> Common ancestor ("Homology")

Sequence comparison and alignment score

1. Sequence Alignment and Sequence Similarity

- Sequence alignment: To determine the similarity between sequences and identify regions of similarity
- Significance:
 - Sequence-to-Structure-to-Function Paradigm, Biomolecular function and property prediction
 - Similar sequence -> Common ancestor: evolution, identifying conservative region (important region e.g histones), investigating mechanism
- Pairwise sequence alignment: Arrange two sequences to maximize the similarity between them. We can also insert gaps in the sequences
- Sequence similarity definition(score an alignment):
 - Match: A <-> A
 - Mismatch (Substitution): G <-> T
 - Gap (Insertion or deletion): C <-> _
 - Example:

Scoring matrix:					Alignment score $1 = 2 + (-7) + (2 + 2) + (-10) + 2$ = 9
	A	С	G	Т	Alignment score $1 = 2 + (-7) + 2/(-2) + (-10) + 2$ = -9
A	2	-7	-5	-7	
С	-7	2	-7	-5	
G	-5	-7	(2)	I	Alignment score 2 = 2 + (-7) + 2 + 2 + (-7) + (-10) A G G C C G
т	-7	-5	-7	2	= -18 A T G C G
Gar	p pe	nalt	v =	-10	AIGCO

o Scoring matrix depends on cases or models

2. Finding the best pairwise alignment

- We have two sequences, scoring matrix → Straightforward solution: enumeration
- Enumerate all the possible alignments between two sequences
- Calculate scores for all the alignments and select the one with the highest score (the degree of similarity)
- Problem:
- Too many possible alignments
 - e.g Align two sequences with length n:
 - o Formula:

Ο

$$\binom{2n}{n} = \frac{(2n)!}{(n!)^2}_{n=300:7*10\$\$}$$

- The possible combinations is almost infinite.
- Solution: Therefore dynamic programming is used to save time and cost for enumeration.