BMEG3105

Fall 2023

Data Analytics for Personalized Genomics and Precision Medicine

Lecture 4: Dynamic Programming

Lecturer: Yu LI (李煜) from CSE

Liyu95.com, liyu@cse.cuhk.edu.hk

15 September 2023

Lecture outline:

- Recap from last lecture
- Dynamic Programming

Part 1. Recap from last lecture

Sequence Data:

- DNA sequence
 - Composed of A, T, C, G bases
 - Consists of complementary double strands
- RNA sequence:
 - Composed of A, U, C, G bases
- Protein sequence:
 - Composed of 20 amino acids
 - Multiple sequence alignment
- To find the best pairwise alignment
 - With two sequences and scoring matrix known
 - Enumeration as a solution
 - Enumerate all the possible alignments between two sequences
 - Calculate scores for all alignments
 - Choose the alignment with the highest score
 - Problem with this solution is that there are too many possible alignments

Part 2. Dynamic Programming (DP):

- Break down a problem into smaller sub-problems
- Solve these sub-problems optimally and recursively
- Use these optimal solutions to construct the optimal solution for the original problem

Flight problem example:

- Direct flight not always cheap
- Finite pre-destination
- Break the flight into several flight trips
- Compare the sum of flight trips for each option and choose the cheapest option

Similarly with Optimal alignment score:

- Each base either aligns to a gap or another base
- Alignment score equals to the sum of score for each alignment pair

Sequence alignment with DP:

- Consider the possibilities of the last pair of the alignment
- Calculate alignment score and choose the best option
- Break down the best option and repeat the last step

ACCG and ACG alignment example:

1. Consider the last base pair. (_ represent blank)

 $F(ACCG, ACG) = Best = \begin{cases} F(ACC, ACG) + F(G, _) \\ F(ACCG, AC) + F(_, G) \\ F(ACC, AC) + S(G, G) \end{cases}$

 $F(ACCG, ACG) = Best = \begin{cases} F(ACC, ACG) - 10 \\ F(ACCG, AC) - 10 \\ F(ACCG, AC) - 10 \\ F(ACC, AC) + 2 \end{cases}$

Scoring matrix:

	Α	С	G	Т
Α	2	-7	-5	-7
С	-7	2	-7	-5
G	-5	-7	2	-7
Т	-7	-5	-7	2

Gap penalty = -10

 \rightarrow Choose the option with highest last base pair score, i.e. F(ACC, AC) + 2

2. Break down unknown part the option chosen

$$F(ACC, AC) = Best \begin{bmatrix} F(AC, AC) + F(C, _) \\ F(ACC, A) + F(_, C) = Best \\ F(AC, A) + S(C, C) \end{bmatrix} \begin{bmatrix} F(AC, AC) - 10 \\ F(ACC, A) - 10 \\ F(AC, A) + 2 \end{bmatrix}$$

The Formula is reduced to boundary case

	Cheapest	Cheapest
	(KAUST, Qatar)	(Qatar, CUHK)
Cheapest _ Cheapest	Cheapest	Cheapest
(KAUST, CUHK)	(KAUST, Dubai)	(Dubai, CUHK)
	Cheapest _	Cheapest
	ິ (KAUST, GZ) ⁺	(GZ, CUHK)

$$F(AC, A) = Best = \begin{cases} F(AC, _) + F(_, A) \\ F(A, _) + S(C, A) \\ F(C, _) + S(A, A) \\ \hline \\ -20 - 10 = -30 \\ -10 - 7 = -17 \\ 2 - 10 = -8 \end{cases}$$

The optimal alignment is ACCG AC_G or ACCG A_CG

	Gap	А	С	С	G
Gap	0	-10	-20	-30	-40
			-		
А	-10	2	-8	-18	-28
		F(<mark>A, A</mark>)			
	\downarrow				
С	-20	-8	4	-6	-16
			F(<mark>A, A</mark>)+F(C, C)	F(<mark>A</mark> C, AC)+F(C, _) /	
	Ļ	\downarrow		F(AC, A)+F(C, C)	
G	-30	-18	-6	-3	-4
					F(<mark>A</mark> CC, <mark>A</mark> C)+F(G,G)

Table representation of the method:

Optimal alignment 1:

ACCG

A_CG

Optimal alignment 2:

ACCG

AC_G

- The arrows preserve the path information
- Arrows in blue highlight the direction that gives the best alignment score
- Trace back the arrows to get the optimal alignment