Data Analytics for Personalized Genomics and Precision Medicine

Lecture 4: Dynamic Programming

Lecturer: Yu LI (李煜) from CSE
Liyu95.com, liyu@cse.cuhk.edu.hk

Lecture outline:

- Recap from last lecture
- Dynamic Programming

Part 1. Recap from last lecture

Sequence Data:

- DNA sequence
- Composed of A, T, C, G bases
- Consists of complementary double strands
- RNA sequence:
- Composed of A, U, C, G bases
- Protein sequence:
- Composed of 20 amino acids
- Multiple sequence alignment
- To find the best pairwise alignment
- With two sequences and scoring matrix known
- Enumeration as a solution
- Enumerate all the possible alignments between two sequences
- Calculate scores for all alignments
- Choose the alignment with the highest score
- Problem with this solution is that there are too many possible alignments

Part 2. Dynamic Programming (DP):

- Break down a problem into smaller sub-problems
- Solve these sub-problems optimally and recursively
- Use these optimal solutions to construct the optimal solution for the original problem

Flight problem example:

- Direct flight not always cheap
- Finite pre-destination
- Break the flight into several flight trips

- Compare the sum of flight trips for each option and choose the cheapest option

Similarly with Optimal alignment score:

- Each base either aligns to a gap or another base
- Alignment score equals to the sum of score for each alignment pair

Sequence alignment with DP:

- Consider the possibilities of the last pair of the alignment
- Calculate alignment score and choose the best option
- Break down the best option and repeat the last step

ACCG and ACG alignment example:

1. Consider the last base pair. (_ represent blank)
$F(A C C G, A C G)=$ Best $\left[\begin{array}{l}F(A C C, A C G)+F\left(G, _\right) \\ F(A C C G, A C)+F\left(_, G\right) \\ F(A C C, A C)+S(G, G)\end{array}\right.$
$F(A C C G, A C G)=$ Best $\left\{\begin{array}{l}F(A C C, A C G)-10 \\ F(A C C G, A C)-10 \\ F(A C C, A C)+2\end{array}\right.$
Scoring matrix:

	A	C	G	T
A	2	-7	-5	-7
C	-7	2	-7	-5
G	-5	-7	2	-7
T	-7	-5	-7	2

Gap penalty $=-10$
\rightarrow Choose the option with highest last base pair score, i.e. $\mathrm{F}(\mathrm{ACC}, \mathrm{AC})+2$
2. Break down unknown part the option chosen
$F(A C C, A C)=\operatorname{Best}\left[\begin{array}{l}F(A C, A C)+F(C, \ldots) \\ F(A C C, A)+F\left(_, C\right)=\text { Best } \\ F(A C, A)+S(C, C)\end{array}-\left[\begin{array}{l}F(A C, A C)-10 \\ F(A C C, A)-10 \\ F(A C, A)+2\end{array}\right.\right.$
The Formula is reduced to boundary case

$$
\begin{aligned}
F(A C, A) & =\text { Best }\left[\begin{array}{l}
F\left(A C, _\right)+F\left(_, A\right) \\
F\left(A, _\right)+S(C, A) \\
F\left(C, _\right)+S(A, A)
\end{array}\right. \\
& =\text { Best }\left[\begin{array}{l}
-20-10=-30 \\
-10-7=-17 \\
2-10=-8
\end{array}\right.
\end{aligned}
$$

The optimal alignment is ACCG AC_G or ACCG A_CG

Table representation of the method:

Optimal alignment 1:
ACCG
A_CG

Optimal alignment 2:
ACCG
AC_G

- The arrows preserve the path information
- Arrows in blue highlight the direction that gives the best alignment score
- Trace back the arrows to get the optimal alignment

