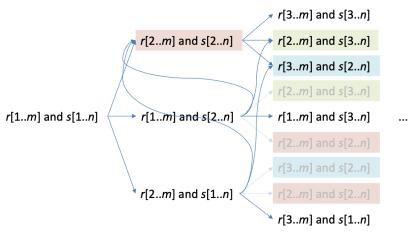
What is dynamic programming? How do we do it?

- A method to identify the best alignment that can be used to identify sequence similarity
- Basic idea: divide and conquer
 - 1. Divide a big problem into smaller problems
 - 2. Solve the smaller problems
 - If a smaller problem is still too difficult to solve, we divide it further into even smaller problems
 - Otherwise, we solve it directly
 - 3. Combine the results to solve the original big problem

Procedure for dynamic programming (recursion tree)


- Suppose we want to align these sequences:
 - **-** *r* **=** AG
 - **s =** G
- Possible alignments (we want to find out the best alignment without listing them in this way):

AG G_ 1

- Notation: The original problem is to align r[1..2] and s[1..1]
- To solve this problem, we want to see which of the following is the best:
 - 1. Align r[1] with s[1], and find the best way to align the remaining (r[2..2] with ϕ , i.e., empty sequence)
 - 2. Align a gap with s[1], and find the best way to align the remaining (r[1..2] with ϕ)
 - 3. Align r[1] with a gap, and find the best way to align the remaining (r[2..2] with s[1..1])
- We can summarize the process using a "recursion tree":

BMEG3105 Lecturer: Yu LI (李煜) Liyu95.com liyu@cse.cuhk.edu.hk Fall 2023 Friday, 15 September 2023 Scriber: Alpha Cheung <u>1155133865@link.cuhk.edu.hk</u>

- Important observation: many sub-problems are the same
- Idea: Store the intermediate results and reuse them

-Note that each sub-problem involves a suffix of r and a suffix of s

Procedure for dynamic programming (table representation)

- 1. Define a scoring matrix
- 2. Fill in a dynamic programming table, including arrows
- 3. Value in the last cell represents the best alignment score
- 4. Trace back arrows to obtain alignment

Scoring matrix

- Define scores for:
 - Match
 - Mismatch (mutations)
 - Gaps (indels, gene duplications)
- Scores can be any numbers of your choice (based on your needs, or built from different databases), e.g.:

	Α	С	G	т	ø (gap)
Α	2	-1	-1	-1	-2
С	-1	2	-1	-1	-2
G	-1	-1	2	-1	-2
Т	-1	-1	-1	2	-2
ø (gap)	-2	-2	-2	-2	0

BMEG3105 Lecturer: Yu LI (李煜) Liyu95.com liyu@cse.cuhk.edu.hk Fall 2023 Friday, 15 September 2023 Scriber: Alpha Cheung <u>1155133865@link.cuhk.edu.hk</u>

Filling in dynamic programming table

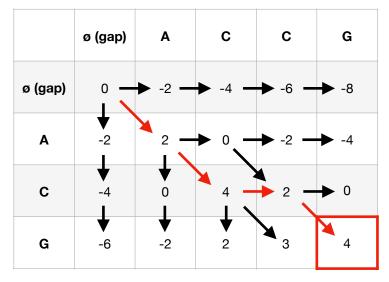
Suppose we have a simple example: alignment between sequences ACCG and ACG

Step 1: Draw out the relevant table as below, with gap coming before the sequence itself:

	ø (gap)	Α	С	С	G
ø (gap)					
Α					
С					
G					

Step 2: Fill out the gap penalties first, using the scoring matrix in section 1.2. Mark progressions with an arrow:

	ø (gap)	Α	С	С	G
ø (gap)	o —	► -2 —	► -4 -	➡ -6 ━	➡ -8
Α	▼ -2				
с	 ↓ -4 ↓ 				
G	-6				


Step 3: For the cell highlighted with red border, there are 3 options, choose the option that provides the highest score:

Case 1: Align row[2], col[2]	Case 2: Align row[2] with gap	Case 3: Align col[2] with gap
А	_	А
А	А	_
Score: 2 (match)	Score: -4 (gap)	Score: -4 (gap)
+2 from row[1], col[1]	-2 from row[2], col[1]	-2 from row[1], col[2]
Diagonal arrow	Horizontal arrow	Vertical arrow

In this example, case 1 provides the highest score amongst the three options. Therefore, we select case 1, and fill in the value and the arrow in the table accordingly:

	ø (gap)	Α	С	С	G
ø (gap)	0 —	► -2 —	► -4 —	➡ -6 ━	-8
Α	◆ -2	2			
С	◆ -4				
G	▼ -6				

Step 4: Repeat step 3 for all remaining cells:

Step 5: Track back arrows to get the sequence alignment(s):

ACCG

AC_G

Highest score = the value in the bottommost right corner = 4