BMEG3105 Data analytics for personalized genomics and precision medicine Student : WU Sio Fong Sid:1155173201 Lecture 5: Assembly and mapping

Pre-course survey result:

Positive comment:	Criticism comment:	Lecture content question:
It was really taught well for this lecture. The algorithm of last pair was interesting to learn and using the table	I think maybe: Cheapest flight problem was overexplained	I want to know why we add extra gap in AGGC for example: in comparing
really helped a lot (was really good way to visualize how the algo would work in the computer)	Could explain how to get the sub problems part more clearly	The volume is a bit small, some words are unclear at the back
Clear ppt and speed	Consider writing some steps on the how to get each alignment score in the matrix	Sequence Alignment with DP was explained confusingly, even though it is simple, and
Very interesting and interactive lecture illustrated by good example. I enjoy it	(mb the first two), show some steps for tracing back	it seemed like many did not understand it
	Would it be possible to show a snippet of a code to implement this kind of algorithm through the tutorial or just as supplementary material?	
	It takes a long time before the lecture, started teaching the topic Question regarding the survey: Your understanding of the lecture content, I am not sure what you count as topic 1,2,3	

Dynamic programming (DP) [split problems into recursive sub-problem]

(building on the previous lesson)

- Purpose: identify sequence similarity between 2 sequences
- ✤ Analogy:

Use fight finite destination as example \rightarrow finite choice for base

- -Align to itself -Another base
- -Gap
- How we determine which choice is the best? \rightarrow alignment score = $\sum score \ of \ each \ pair$

Scoring matrix:

	Α	С	G	Т
Α	2	-7	-5	-7
С	-7	2	-7	-5
G	-5	-7	2	-7
Т	-7	-5	-7	2

Score matrix is what we could define by our own, which will affect the result of the alignment Depends on how we define the "similarity"!!!

How we use DP to solve this problem based on alignment score matrix? Eg: F(ACCG,ACG) = Best[F(ACG,ACG) + F(G,__),

```
F(ACCG,AC) + F(\_,G),

F(ACC,AC)+S(G,G)]

and repeat doing this until we find the best solution
```

Another way to show this process is through DP table (simplify the reduction preocess)
 Eg: To match ACCG & ACG

		Α	С	С	G
	F(0,0)	F(1,0)	F(2,0)	F(3,0)	F(4,0)
Α	F(0,1)	F(1,1)	F(2,1)	F(3,1)	F(4,1)
С	F(0,2)	F(1,2)	F(2,2)	F(3,2)	F(4,2)
G	F(0,3)	F(1,3)	F(2,3)	F(3,3)	F(4,3)

Figure 2. Show best value of each combination

• Elements in the table:

Value: -Fill the table according to the matrix :go right/down/ diagonal right -Each cell keep max value from above calculation

-If the value is small enough, we don't calculate anymore

-We only focus on the last cell value (Global and local alignment *)

Arrow: Showing the path; 2 path →2 optimal alignments Trace back to find the alignment after filling The alignment for ACCG & ACG are: ACCG,A_CG; ACCG,AC_G

*Addition:

Global alignment \rightarrow to find similar components, motifs and domains and in dissimilar sequences Local alignment \rightarrow to compare 2 different sequence similarity

• Time complex of DP : O(n²) [which is better than enumeration result : $\frac{(2n)!}{(n!)(n!)}$]

Corresponding real biology situation:

Score matrix	Reality meaning in biology
Mismatch	Mutations
Gap	Insertion/deletion; gene duplications

Additional Source:

Webserver for sequence alignment: https://www.ebi.ac.uk/Tools/psa/emboss_needle/ Biopython: https://biopython.org

Sequence Data

- Why sequence Data
 - o Central dogma
 - Hidden genetic information
 - Phenotype = genotype (sequence) + environment
 - Human genome is mostly same (0.001% variation)
 - o 1% of the genome control encoding protein
- How we get gene expression matrix from sequence?
 - o mRNA isolation from sample
 - o illumine sequencing in machine
 - align sequences against genome to construct the matrix
 map the short read to the genome
 - -count the number of read -- > gene expression matrix

Genome assembly

- Purpose: reconstruct the complete DNA sequence of an organism's genome
- Possible problem:
 - -mutation, conflict (due to noise/error)
 - -repeated sequences; repeat genes; faster algorithm
 - \rightarrow Possible solution: do a longer sequence
- Mapping example:

slide the read along the genome & calculate the difference

- Resource and Uncover Part
 - Bioinformatics: Sequence and Genome Analysis---Chapter 2&3
 - Time complexity and space complexity analysis
 - o Local alignment
 - Multiple sequence alignment

➤ Affine gap penalty

Sequence database search: BLAST