Scribing: Clustering

Name: Lai Jacobi Wing Ki SID: 1155159737

1. What is Clustering?

clustering analysis is defined as 'finding groups of objects such that the objects in a group will be similar to one another and different from the objects in other groups'

Benefit of clustering

> Cluster items

- Better organization
- Faster searching

Cluster genes

- Identify co-expressed genes
 - Involved in the same pathway
- Identify differentially expressed genes

General Clustering

- Reduce the size of large data sets
- Preserve privacy

What are needed to do clustering in gene aspect?

- \blacktriangleright Two sequences
- Dynamic programming algorithm
- > A scoring matrix

Similarity

2. Similarity and dissimilarity

Dissimilarity

 \blacktriangleright Also call as distance

> Cluster people

- Patients: different treatment for different groups
- Customers: different groups with different needs
 - Optimize the product based on the need of the targeting group
- Cluster samples/cells
 - Identify new disease sub-types
 - Identify new cell types
 - Discover new group

- - Related to diseases

- Numerical measure of how alike two data objects are
- Higher when objects are more alike
- Numerical measure of how different two data objects are
- Lower when objects are more alike

Method to find the similarity between data

- Cosine similarity
- ➤ Correlation
- ➢ Euclidean distance
- Minkowski distance

Cosine similarity

If d_1 and d_2 are two vectors, then

 $\succ \cos(d_1, d_2) = \frac{d_1 \cdot d_2}{(|d_1| * |d_2|)}$

> Where \cdot indicate vector dot product and |d| is the length of the vector d

Example:

 $d_1 = 3205000200$ $d_2 = 100000102$

 $\begin{array}{l} d_1 & \bullet & d_2 = \ 3^*1 + 2^*0 + 0^*0 + 5^*0 + 0^*0 + 0^*0 + 0^*0 + 2^*1 + 0^*0 + 0^*2 = 5 \\ ||d_1|| & = \ (3^*3 + 2^*2 + 0^*0 + 5^*5 + 0^*0 + 0^*0 + 0^*0 + 2^*2 + 0^*0 + 0^*0)^{0.5} = \ (42)^{0.5} = 6.481 \\ ||d_2|| & = \ (1^*1 + 0^*0 + 0^*0 + 0^*0 + 0^*0 + 0^*0 + 1^*1 + 0^*0 + 2^*2)^{0.5} = \ (6)^{0.5} = 2.245 \end{array}$

 $\cos(d_1, d_2) = 0.3150$

Correlation

Correlation measures the linear relationship between objects

Example:

	r r	K	X	X		
b	a²	a×b	"b"	"a"	Sales	emp °C
34,969	20.3	842	-\$187	-4.5	\$215	14.2
5,929	5.3	177	-\$77	-2.3	\$325	16.4
47,089	46.2	1,476	-\$217	-6.8	\$185	11.9
4,900	12.3	245	-\$70	-3.5	\$332	15.2
16	0.0	-1	\$4	-0.2	\$406	18.5
14,400	11.6	408	\$120	3.4	\$522	22.1
100	0.5	7	\$10	0.7	\$412	19.4
44,944	41.0	1,357	\$212	6.4	\$614	25.1
20,164	22.1	667	\$142	4.7	\$544	23.4
361	0.4	-11	\$19	-0.6	\$421	18.1
1,849	15.2	168	\$43	3.9	\$445	22.6
36	2.3	-9	\$6	-1.5	\$408	17.2
174,757	177.0	5,325			\$402	18.7
1	1	K			1	k
	///				/	
	n Up	2 Sun		ans	ulate Me	

[•]Euclidean distance

$$Ed(\mathbf{p}, \mathbf{q}) = \sqrt{\sum_{k=1}^{m} (p_k - q_k)^2}$$

➢ Where m is the number of dimensions and pk and qk are, respectively, the k -th attributes of data objects p and q.

Example:

point	x	v
p	0	2
p2	2	0
p3	3	1
p4	5	1

	p1	p2	p3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
p3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Minkowski distance

- Minkowski Distance is a generalization of Euclidean Distance
- r is a parameter
- m is the number of dimensions
- *p*k is the *k*-th attributes of data objects
 p

$$dist(\mathbf{p}, \mathbf{q}) = \left(\sum_{k=1}^{m} |p_k - q_k|^r\right)^{\frac{1}{r}}$$

- *q*k is the *k*-th attributes of data objects
 q
- r = 1 City block (Manhattan, taxicab, *L*1 norm) distance.
 - Example: Hamming distance

- number of bits that are different between two binary vectors
- r = 2 Euclidean distance
- $r \rightarrow \infty$ "supremum" (*L*max norm, $L\infty$ norm) distance.
 - maximum difference between any component of the vectors

Example:

point	Х	у
p1	0	2
p2	2	0
p3	3	1
p4	5	1

r=1

r=2	
1-2	

r	÷	Ŷ	

L1	p1	p2	p3	p4
p1	0	4	4	6
p2	4	0	2	4
p3	4	2	0	2
p4	6	4	2	0
L2	p1	p2	p3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
p3	3.162	1.414	0	2
p4	5.099	3.162	2	0
L _∞	p1	p2	р3	p4
p1	0	2	3	5
p2	2	0	1	3
p3	3	1	0	2
p4	5	3	2	0

_.....

3. Hierarchical clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
- A tree like diagram that records the sequences of merges
- They may correspond to meaningful taxonomies, like Gene clusters, phylogeny reconstruction

Steps of hierarchical clustering

- 1. Compute the Similarity or Distance matrix
- 2. Let each data point be a cluster
- 3. Merge the two closest clusters
- 4. Update the similarity or distance matrix (first time)
- 5. Merge the two closest clusters
- 6. Update the similarity or distance matrix (second time)
- 7. Continue the previous two steps
- 8. Until only a single cluster remains

Ways to update the distance matrix after merging

- Min
- Max
- Group Average
- Distance between centroids

Gene	wt	mutant_1	mutant_2	mutant_3
At4g35770	1.5	3	3	1.5
At1g30720	4	7.5	7.5	5
At4g27450	1.5	1	1	1.5
At2g34930	10	25	23	15
At2g05540	1	1	2	1

Step 1: Use correlation

$$ho_{X,Y} = \operatorname{corr}(X,Y) = rac{\operatorname{cov}(X,Y)}{\sigma_X\sigma_Y} = rac{\operatorname{E}[(X-\mu_X)(Y-\mu_Y)]}{\sigma_X\sigma_Y}$$

Then we will get a new graph

	At4g35770	At1g30720	At4g27450	At2g34930	At2g05540
At4g35770	1				
At1g30720	0.9733	1			
At4g27450	-1	-0.9733	1		
At2g34930	0.9493	0.9909	-0.9493	1	
At2g05540	0.5774	0.562	-0.5774	0.4528	1

Step 2: remove the 1

Step 3: Merge the two closest matrix (At2g34930 and At1g30720)

	At4g35770	At1g30720	At4g27450	At2g34930	At2g05540
At4g35770					
At1g30720	0.9733				
At4g27450	-1	-0.9733			
At2g34930	0.9493	0.9909	-0.9493		
At2g05540	0.5774	0.562	-0.5774	0.4528	

Step 4: Update with minimum distance (largest correlation)

	At4g35770	At1g30720	At4g27450	At2g34930	At2g05540
At4g35770					
At1g30720	0.9733				
		-0.9733			
At4g27450	-1	->-0.9493			
	0.9493				
At2g34930	->0.9733		-0.9493		
				0.4528	
At2g05540	0.5774	0.562	-0.5774	->0.562	

Step 5: Merge the two closest matrix (At2g34930 , At1g30720 and At4g35770)

	At4g35770	<mark>At1g30720</mark>	At4g27450	<mark>At2g34930</mark>	At2g05540
At4g35770					
At1g30720	0.9733				
At4g27450	-1	-0.9493			
At2g34930	0.9733		-0.9493		
At2g05540	0.5774	0.562	-0.5774	0.562	

Step 6: Update with minimum distance (largest correlation)

			At4g35770	At1g30720	At4g27450	At2g34930	At2g05540
_		At4g35770					
1	d	At1g30720					
L			-1				
		At4g27450	->-0.9493	-0.9493			
	ų	At2g34930			-0.9493		
				0.562		0.562	
		At2g05540	0.5774	->0.5774	-0.5774	->0.5774	

Step 7: Merge the two closest matrix (At2g34930 , At1g30720 , At4g35770 and At2g05540)

		At4g35770	At1g30720	At4g27450	At2g34930	At2g05540
_	At4g35770					
l r	At1g30720					
Ч	At4g27450	-0.9493	-0.9493			
ા	At2g34930			-0.9493		
	At2g05540	0.5774	0.5774	-0.5774	0.5774	

Step 8: Update with minimum distance (largest correlation)

			At4g35770	At1g30720	At4g27450	At2g34930	At2g05540
		At4g35770					
No	ae2	At1g30720					
Node	Node1 3	At4g27450	-0.5774	-0.5774			
		At2g34930			-0.5774		
		At2g05540			-0.5774		

This is the end of forming a hierarchical clustering