Scribing: Classification perf –lecture 10

Name: Lai Jacobi Wing Ki SID: 1155159737

1 Find a good K for KNN

Standard KNN have chosen the distance metric and K, but we don't know if the k we choose is the best. Thus, we need to find a good K.

1.1 Good K

• The K can give us good prediction accuracy

1.2 How to find a good k

- First use part of the training data as the testing data
- ➤ Choose k=1
- ➤ Thirdly use each part one by one
- ➢ After that calculate the average over all the parts
- \succ Then try other k value
- Lastly select the k with highest accuracy

1.2.1 Example

Person	Height	Weight	Gender
P1	0.625	0.875	Μ
P2	0	0	F
Р3	0.25	0.375	Μ
P4	1	1	М
P5	0.4583	0.6667	??

	P1	P2	P3	Ρ4
P1	0	0.875	0.5	0.
P2	0.875	0	0.375	
P3	0.5	0.375	0	C
p4	0.375	1	0.75	

Compute distances (here is Euclidean distance)

K=1	P1: P4—M P2: P3—M P3: P2—F P4: P1—M	Accuracy = 0.5
K=2	P1:P3 P4-M P2: P1 P3-M P3: P1 P2-F/M P4: P1 P3-M	Accuracy = 0.5/ 0.75
K=3	P1: M P2: M P3: M P4: M	Accuracy = 0.75

Thus, we choose K=3

2 Cross-fold validation

- it is a technique for assessing how the results of a machine learning analysis will generalize to an independent data set
- A procedure to measure the performance of models
- Involves partitioning a set of data into complementary subsets performing the analysis (training set), and validating the analysis (testing set)

2.1 n-fold cross-validation

- ♦ train multiple times
- ◊ leaving out a disjoint subset of data each time for validation
- \diamond average the validation set accuracies

2.1.1Process of n-fold cross-validation

Process:

Randomly partition data into n disjoint subsets

- For i = 1 to n
 - Validation Data = i-th subset
 - h <- classifier trained on all data except for Validation Data
 - Accuracy(i) = accuracy of h on Validation Data

Final Accuracy = mean of the n recorded accuracies

2.1.2Example -5-fold cross-validation

10 data	
• P1-P10	
5-fold	
• P1-2, P3-4, P5-6, P7-8, P9-10	
• Can random group	

ProcedureP1-2's results based on the					All Data	l		
 model from P3-10 P3-4's results based on the model from P5-10 and P1-2 			٦	Fraining da	ta			Test data
P9-10's results based on the		Fold 1	Fold 2	Fold 3	Fold 4	Fold 5)	
model from P1-8Averaging	Split 1	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5		
	Split 2	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	ļ	► Finding Parameter
	Split 3	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5		5
	Split 4	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5		
	Split 5	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5)	
					Final ev	aluation 🖣		Test data

2.2 Leave-one-out cross-validation

 \blacktriangleright a special case of n-fold cross-validation, where n = N

Process:

> Partition data into N disjoint subsets, each containing one data point

≻For i = 1 to N

- Validation Data = i-th subset
- h <- classifier trained on all data except for Validation Data
- Accuracy(i) = accuracy of h on Validation Data

Final Accuracy = mean of the N recorded accuracies

3 Multi-class classification

KNN

logistic regression

- it is trivial
- No need to change the algorithm
- need some changes
- When predicting, we assign class with highest value
- When training, we train 3*6=18 parameters
- ✤ Using accuracy, precision, recall, F1 score
- Considering each class as a binary classification problem

3.1 Ways to aggregate multiple values into one value

- \rightarrow Macro average
- \rightarrow Micro average

3.1.1 Example

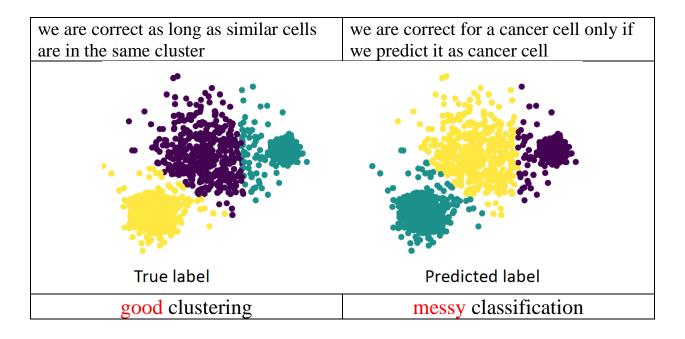
Class	Accuracy	Cells	Macro – average 0.9 + 0.95 + … + 0.7 + 0.2
1	0.9	150	$\frac{0.9 + 0.93 + 0.97 + 0.77 + 0.2}{6} = 0.73$
2	0.95	50	
3	0.85	100	
4	0.8	40	Micro – average
5	0.7	20	$0.9 * 150 + \dots + 0.2 * 10$
6	0.2	10	$\frac{150 + \dots + 10}{150 + \dots + 10} = 0.85$

★ The low performance of small classes will show up in Macro-average

4 Clustering evaluation

4.1 Clustering vs	Classification
-------------------	----------------

Clustering Classification		
	Clustering	Classification



4.2 How to evaluate clustering?

1 First evaluate a pair of cells

2 Second made a confusion matrix

		Predicted cluster	S
A stress I		The same	Not the same
Actual clusters	The same	a(TP)	b(FN)
	Not the same	c(FP)	d(TN)

a: the number of pairs are in the same cluster in the True clusters and also assigned to one cluster in the Predicted clusters

b: the number of pairs are in the same cluster in the True clusters and also assigned to different clusters in the Predicted clusters

c: the number of pairs are in different clusters in the True clusters and also assigned to one cluster in the Predicted clusters

d: the number of pairs are in different clusters in the True clusters and also assigned to different clusters in the Predicted clusters

3 Third, calculate the Rand index and Pairs

$$R = \frac{a+d}{a+b+c+d} = \frac{a+d}{Number of all the pair combinations}$$

$$Pairs = \binom{n}{2} = \frac{n * (n - 1)}{2}$$
 n: Total number of points

4 Finally, the Rand index closer to 1, the cells are more likely in the same cluster.

Cell	C1	C2	C3	C4	C5
Real cluster	0	0	0	1	1
Predicted cluster	2	2	3	3	3

4.2.1 Example

sample data

Pair	Real	Predicted	Results
C1, C2	Same	Same	\checkmark
C1, C3	Same	Different	×
C1, C4	Different	Different	\checkmark
C1, C5	Different	Different	\checkmark
C2, C3	Same	Different	×
C2, C4	Different	Different	\checkmark
C2, C5	Different	Different	\checkmark
C3, C4	Different	Same	×
C3, C5	Different	Same	×
C4, C5	Same	Same	\checkmark

After pairing and comparison

$$Pairs = \binom{5}{2} = \frac{5 * (5 - 1)}{2} = 10$$

Rand index =

$$R = \frac{a+d}{a+b+c+d} = \frac{6}{10} = 0.6$$