BMEG3105

Data Analytics for Personalized Genomics and Precision Medicine Lecture 11: Feature selection & dimension reduction Lecturer: Yu LI (李煜) from CSE Liyu95.com, liyu@cse.cuhk.edu.hk Scriber: Lo Ka Yee SID: 1155143047

11 October 2023

- I. Recap from previous lecture
- II. Reasons for feature selection & dimension reduction
- III. Feature selection
- IV. Dimension reduction
- I. Recap from previous lecture
 - N-fold vs leave-one-out validation
 - N-fold: build n classifiers to validate the model, grouping of data can be random
 - Leave-one-out: number of classifiers equal to number of data points
 - How logistic regression is used for multi-class classification
 - Build logistic regression function for each class
 - Prediction is done by assigning the class with highest value
- II. Reasons for feature selection
 - Huge volume of Bio-data
 - Bio-data consist of noisy, unrelated, and duplicated data
 - Irrelevant genes
 - Highly correlated genes
 - Complementary genes
 - Benefits of feature selection and dimension reduction
 - Data compression for efficient storage and retrieval
 - Improve prediction performance
 - Understand the prediction results
 - Facilitate data visualization

- III. Feature selection
 - Feature: genes; Data point: cells
 - Select/ extract the most relevant features to build a better model
 - Methods to reduce dimensionality
 - Feature selection
 - Choose the best subset genes from all the genes
 - Methods of feature ranking (find the most relevant features)
 - Correlation
 - Calculate the correlation between individual feature and class
 - Mutual information
 - Fisher score
 - Issues of individual features ranking
 - Relevance and usefulness are not correlated
 - Selection of redundant subset
 - Some features may be useful only with other features
 - Feature subset selection: Filter and Wrapper
 - Filter
 - Classification performance not involved
 - Higher variance -> more useful information
 - Information gain should be different for features
 - Wrapper
 - Sequential feature selection
 - Selection based on classification performance of features
 - Computational expensive
 - Recursive feature elimination
 - Sequential feature selection
 - Process:
 - Build a model for each feature and find out the best feature
 - Add the second feature cross validation to check the performance
 - Add feature until the new feature does not improve performance

- IV. Dimension reduction
 - Feature extraction
 - Extract new features by linear or non-linear combination of the original features
 - Principal components analysis (PCA)
 - Vector space transformation

- In this case: After vector transformation, x' can capture the maximum variance, while y' can capture none. y' is removed, so that one dimension can be removed, but information is preserved
- How to do PCA
 - Normalize each feature in a data matrix X to get X' so that the average of each feature is 0.
 - Calculate the covariance matrix of X'
 - $\Sigma = \frac{1}{n-1} X'^T X', \Sigma$: a d by d matrix
 - Find the eigenvectors and eigenvalues of Σ
 - The principal components are the M eigenvectors with the M largest eigenvalues
 - Project the data to the M eigenvectors' direction
- PCA Example illustration:
 - Matrix X:

X1	1	1	1
X2	2	2	2
Х3	3	3	3

Normalization of X to X'

X1	-1	-1	-1
X2	0	0	0
Х3	1	1	1

Calculate the covariance matrix of X'

$$\Sigma = \frac{1}{n-1} X'^T X' = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Find the eigenvalues and vectors of Σ

$$\Sigma * V = \lambda * V$$

$$|\Sigma - \lambda I| = 0$$

 $\begin{vmatrix} 1 - \lambda & 1 & 1 \\ 1 & 1 - \lambda & 1 \\ 1 & 1 & 1 - \lambda \end{vmatrix} = 0$

$$(1 - \lambda)^3 + 1 + 1 - (1 - \lambda) - (1 - \lambda) - (1 - \lambda) = 0$$

• We will find that $\Lambda_1=3$, $\Lambda_{2,3}=0$, subsituting the eigenvalues into the equation, we can find the respective eigenvectors.

$$\lambda_1 = 3$$
 $V_1 = \begin{bmatrix} \frac{\sqrt{3}}{3} \\ \frac{\sqrt{3}}{3} \\ \frac{\sqrt{3}}{3} \end{bmatrix}$ $\lambda_{2,3} = 0$ $V_{2,3} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

The V₁ here is normalized.

Project the data to M eigenvectors' direction

$$\hat{X} = X'P$$

$$P = \begin{bmatrix} \frac{\sqrt{3}}{3} & 0\\ \frac{\sqrt{3}}{3} & 0\\ \frac{\sqrt{3}}{3} & 0 \end{bmatrix} \qquad \hat{X} = X'P = \begin{bmatrix} -1 & -1 & -1\\ 0 & 0 & 0\\ 1 & 1 & 1 \end{bmatrix} * \begin{bmatrix} \frac{\sqrt{3}}{3} & 0\\ \frac{\sqrt{3}}{3} & 0\\ \frac{\sqrt{3}}{3} & 0 \end{bmatrix} = \begin{bmatrix} -\sqrt{3} & 0\\ 0 & 0\\ \sqrt{3} & 0 \end{bmatrix}$$

Therefore, we can obtained a reduced data matrix:

X1	$-\sqrt{3}$	0
X2	0	0
X3	$\sqrt{3}$	0
-		