Lecture 16: Cancer Genomics overview

Friday, 27th October 2023

Lecture Outline:

- Cancer genomics overview
- Genome: variant calling

1. Cancer genomics overview

1.1 What is cancer?

 A disease in which some of the body's cells grow <u>uncontrollably</u> and <u>spread</u> to other parts of the body

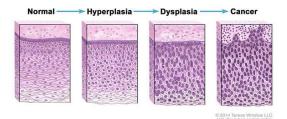
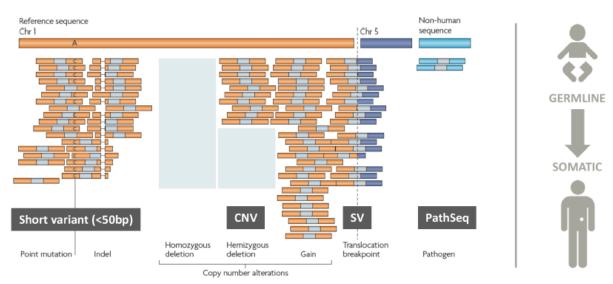


Figure 1 Formation of cancer

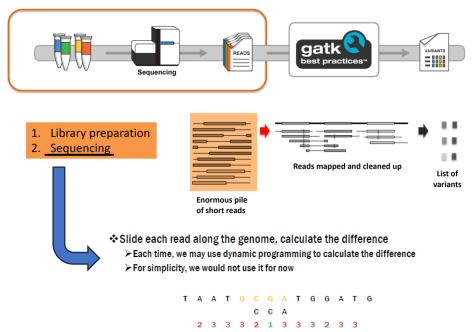
1.2 Why do we want to study cancer?

- More than half a million people in the US died from cancer in 2021
- Cancer remains a leading cause of death globally
- 1.3 How do we study cancer?
 - Cancer is usually believed to be a genomic disease
 - Study method: genomics/ multi-omics
 - Examples: genome, epigenome, transcriptome, proteome, metabolome


1.4 Data analytics for cancer genomics

- Genome analysis: variant calling, genome association study
- Epigenome analysis: identification of gene, peak calling, differential peak calling
- RNA-seq: DEG, gene fusion

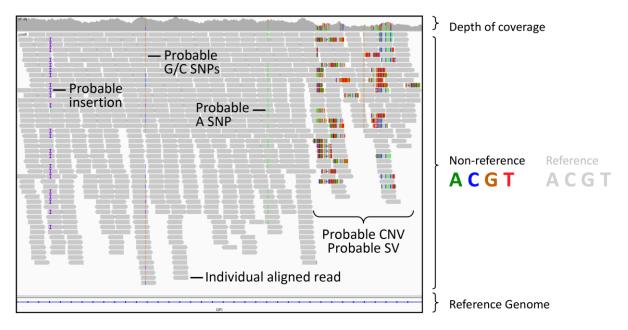
2 Genome: variant calling


2.1 Why do we care about gene variants?

- 3.2 billion sites in the human genome
 - Any 2 humans share 99.5% DNA \rightarrow Can easily describe a genome with relation to a reference
- Gene differences \rightarrow differences in disease risk & response to treatment
 - Cancer can be considered as genetic variants at multiple levels
- Genetic variation is used to find genes and variants that contribute to disease

2.2 Different types of gene variants

2.3 How to discover the genetic variants?



2.4 How to distinguish actual variation (real change) and errors(artifacts) in the analysis?

Types of errors that could occur at different steps of the analysis:

- 1. PCR artifacts (amplification of errors)
- 2. Sequencing (errors in base calling)
- 3. Alignment (misalignment, mis-gapped alignments)
- 4. Variant calling (low depth of coverage, few samples)
- 5. Genotyping (poor annotation)

View of probable variants in a genome browser:

