BMEG-3105 Data analytics for personalized genomics and precision medicine Lecture 17: Genomics data analysis Name: Lee KinHei SID: 1155158901

1. Genome

We must distinguish between actual variation (real change) and errors (artifacts) for example, if we only have single read character difference, we may not sure if it is a real change or an error, but, if there are multiple reads that indicate the same change, we may think that it is an actual change instead of error.

Data processing pipeline

1.1 Map the reads produced by the sequencer to the gene reference

Input format: FASTQ

@SRR6407486.	1 length=100			Sequence name
CCTCGTCTACA	GCGACAAC GA	TTTGACCTACG	TCGAAGTG	DNA sequence
+SRR6407486.	1 length=100			Quality line break
BBBBBFFFFFF	FFFFFFF FB	FFFFFFFFFF	7FFFF <ff< td=""><td>Quality scores</td></ff<>	Quality scores
y scores as ASCII ch	aracters:	Base Qual:	: T ity: 7	

Each character in the sequence will have a quality score and it is represented by ASCII characters from "!" to "K"

Output: SAM/BAM (SAM stored as text, BAM stored as binary format)

OHD	VN:1.0	S0:coordin	nate									
050	SN:chr26	L	:64444167									
OPG	ID:TopHa	t VM	1:2.0.14	CL:/	srv/dna_to	ols/topha	t/tophat	-N 3 r	ead-edit	t-dist 5	read-	rea
lig	n-edit-dist 2	? -i 50 -I	5000 max	- coverag	e-intron 5	000 - M - 0	out /dat	ta/user44	6/mappi	ng_tophat	/index/	chr
20	/data/user446	/mapping_t	tophat/L6_1	8_GTGAAA	L007_R1_0	01.fastq						
HWI	-ST1145:74:CI	01DACXX:7:	1102:4284:	73714	16	chr20	190930	3	100M	•	Θ	θ
	CCGTGTTT	AAGGTGGATO	GCGGTCACCTT	CCCAGCTA	GGCTTAGGGA	TTCTTAGTT	GGCCTAGG	AAATCCAGC	TAGTCCT	STCTCTCAG	TCCCCCC	TCT
C	BBDCCDDCCDD	DDCDDDDDD	DCCCDBC ?DD	DDDDDDDD	ODDDDDCCDCD	DDDDDDDDDD	CCCCEDDD	C?DDDDDDD	DDDDDDDD	DDDDDDDBD	HFFFFDO	00
	AS:1:-15	XM:1:3	3 X0:1:0	XG:1:0	MD:Z:55C20	C13A9 NM:	1:3 NH:	1:2 CC:Z	:= CP::	1:5535271	4 HI:	1:0
HWI	-ST1145:74:CI	01DACXX:7:	1114:2759:	41961	16	chr20	193953	50	100M		Θ	θ
	TGCTGGATC	ATCTGGTTAG	STGGCTTCTGA	CTCAGAGG	ACCTTCGTCC	CCTGGGGC	GTGGACCT	TCCAGTGAT	TCCCCTG	ACATAAGGO	GCATGGA	ICGA
G	DCDDDDEDDDD	DDDDCDDDDDD	DCCCDDDCDD	DDDEEC>D	FFFEJJJJJJI	GJJJJJIHGE	HHGJIJJJ.	JJJCJJJIJ	JJJJJIHJ.	тородинин	HFFFFF(CC
	AS:1:-16	XM:1:3	3 X0:1:0	XG:1:0	MD:Z:60G16	T18T3 NM:	1:3 NH::	i:1				
HWI	-ST1145:74:CI	01DACXX:7:	1204:14766	:4030	16	chr20	270877	50	100M	•	0	θ
	GGCTTTATT	GGTAAAAAA	GAATAGCAGA	TTTAATCA	GAAATTCCCA	CCTGGCCCA	GCAGCACC	AACCAGAAA	GAAGGGA	AGAAGACAG	GAAAAAA	ICCA
C	DDDDDDDDDCC	DDDDDDDDDDD	DEEEEEEFFF	EFFEGHHH	HFGDJJIHJJ	IJIJJJJIIJ	IGGFJJIH	IIIIJJJJJJ	JIGHHFA	IGFHJHFGO	HFFFDD	BB
	AS:1:-11	XM:1:2	2 X0:1:0	XG:1:0	MD: Z: 0A85G	13 NM:	1:2 NH::	i:1				
HWI	-ST1145:74:C1	01DACXX:7:	1210:11167	:8699	θ	chr20	271218	50	50M4700	N50M	•	θ
_	0 0	TGGCTCTTCC	CACAGGAATGT	TGAGGATG	ACATCCATGT	CTGGGGTGG	ACTTGGGT	CTCCGAAGC	AGAACAT	CCTCAAATA	TGACCTO	TCG
acc	epted_hits.sa	m										

HEADER lines starting with @ symbol describing various metadata for all reads

@HD	VN:1.6 SO:coordinate -	 BAM header line
eso	SN:seq1 LN:394893	Reference sequence dictionary entries
eso	SN:seq2 LN:92783	norener eequeriee aleaenary enanee
@RG	ID:A SM:SAMPLE_A	Read group(s)

RECORDS containing structured read information (1 line per read/record)

read name	position			CIGAR		read sequence	metadata	
SLX1:1:127:63:4	99	1 10052169	50 2	23M6N10M = 14	10	GAAGATACTGGTT	768832'48::::	RG: Z : A
			Г					
flags		6 M/	٩PQ	mate info	rmat	ion P	es	

- · Added mapping info summarizes position, quality, and structure for each read
- · Mate information points to the read from the other end of the molecule (other in a pair)

Here we want to specifically mention CIGAR (alignment)

CIGAR \rightarrow alignment report

We can see starting from POS:2 we have 3 matches from index 2,3,4 so 3M will be there. Then, 1 deletion from the reference so 1D for index 5. 2 matches for index 6 and 7. 1 insertion to the reference after index 7 to match Read A. 1 more match afterward for index 8. All of the above created a sequence mapping with the best score.

1.2 Mark duplicates

Duplicates = **non-independent measurements** of a sequence fragment

-> Must be removed to assess support for alleles correctly

- Reference	
 Mapped reads 	
Picard Mark	Duplicates

x = error propagated in duplicates

The duplicates may mislead us to let us believe the random errors as actual variants because when it increases the number of reads and increases the confidence score in variant calling.

Where these duplications come from?

- 1. Library duplicates caused by PCR
- 2. Optical duplicates
- 1.3 Variant Calling

Variant Call Format (VCF)

Simple comparison where the reference and the read is different

	٢	##fil	eformat=	VCFv4.1										
	##reference=1000GenomesPilot-NCBI36													
	L	##INF	O= <id=di< td=""><td>,Number=1</td><td>Тур</td><td>e=Inte</td><td>eger,D</td><td>escripti</td><td>on="Total Dept</td><td>h"></td><td></td><td></td><td></td></id=di<>	,Number=1	Тур	e=Inte	eger,D	escripti	on="Total Dept	h">				
~	##INFO= <id=af,number=a,type=float,description="allele frequency"=""></id=af,number=a,type=float,description="allele>													
Ë	##INFO= <id=db,number=0,type=flag,description="dbsnp membership"=""></id=db,number=0,type=flag,description="dbsnp>													
EAL	۱.	##FIL	TER= <id=< td=""><td>=s50,Descri</td><td>pti</td><td>on="Le</td><td>ess th</td><td>an 50% c</td><td>f samples have</td><td>data"></td><td></td><td></td><td></td></id=<>	=s50,Descri	pti	on="Le	ess th	an 50% c	f samples have	data">				
т	L	##FOR	MAT= <id=< td=""><td>=GT,Number=</td><td>=1,T</td><td>/pe=St</td><td>tring,</td><td>Descript</td><td>ion="Genotype"</td><td>></td><td></td><td></td><td></td></id=<>	=GT,Number=	=1,T	/pe=St	tring,	Descript	ion="Genotype"	>				
	L	##FOR	MAT= <id=< td=""><td>=GQ,Number=</td><td>=1,T</td><td>pe=Ir</td><td>nteger</td><td>,Descrip</td><td>tion="Genotype</td><td>Quality"></td><td></td><td></td><td></td></id=<>	=GQ,Number=	=1,T	pe=Ir	nteger	,Descrip	tion="Genotype	Quality">				
	L	##FOR	MAT= <id=< td=""><td>DP,Number=</td><td>1,T</td><td>pe=Ir</td><td>nteger</td><td>,Descrip</td><td>tion="Read Dep</td><td>th"></td><td></td><td></td><td></td></id=<>	DP,Number=	1,T	pe=Ir	nteger	,Descrip	tion="Read Dep	th">				
	l	#CHRC	M POS	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT	NA00001	NA00002	NA00003	
S	٢	20	14370	rs6054257	G	A	29	PASS	DP=14;AF=0.5	GT:GQ:DP	0/0:48:1	1/0:48:8	1/1:43:5	
ORI -	Ł	20	1230237		т		47	PASS	DP=13	$\mathbf{GT}:\mathbf{GQ}:\mathbf{DP}$	0/0:54:7	0/0:48:4	0/0:61:2	
REC	l	20	1234567		GT	G	50	PASS	DP=9	GT: GQ: DP	0/1:35:4	0/2:17:2	1/1:40:3	

POS: The start coordinate of the variant

REF: Found in reference genome

ALT: Found in sample you are studying

INFO: additional information eg DP=combined depth across samples,

AF=allele frequency for each ALT allele in the same order as listed

We should have joint variant calling to increase the credibility

Downstream analysis after data preprocessing pipeline Genome-wide association studies(GWAS) Try to determine whether specific variant(s) in many individuals can be associated with a trait like a disease.

Spot the variant that is common amongst all affected but absent in all unaffected

The ideal case (for some rare Mendelian diseases)

But in reality, we have much more cases to study and thus, we need to adjust the statistical significance value to increase the credibility.

Bonferroni Correction

Originally, p-value of 0.05 should be enough for a single test but how about 1 million tests.

We need to adjust the p-value to p-value/number of tests = $5 * 10^{-8}$ to make the whole test more convincible.

RNA-seq data analysis

2.1 gene fusion

First fusion gene was described in cancer cells in early 1980s and it means novel gene formed by fusion of two distinct wild type genes.

Gene fusion is a specific kind of structural variant related to cancer

2.2 RNA-seq for gene fusion detection

In gene fusion, after the fusion gene DNA translated to protein, we will have only Exon1 and Exon3 which is a mature mRNA. The break point will happen in the introns, so it is impossible to detect if we only check the mature mRNA. Thus, we need to do the whole genome sequencing. We will find a very long gap between reads which maybe a gene fusion.

Epigenome

Try to identify the location of the modified DNA as well as the modified Histon.

3.1 Overall data analytics pipeline for epigenetics

Peak calling

It is a statistical testing that finds the peak by contrasting the peak shape and random background.

Peak calling output: Browser Extensible Data

track	name="ItemRGB	Demo" descript	ion="Ite	n RGB	dem	onstration"	visibility=2	itemRgb="0n"
chr7	127471196	127472363	Pos1	0	+	127471196	127472363	255,0,0
chr7	127472363	127473530	Pos2	0	+	127472363	127473530	255,0,0
chr7	127473530	127474697	Pos3	0	+	127473530	127474697	255,0,0
chr7	127474697	127475864	Pos4	0	+	127474697	127475864	255,0,0
chr7	127475864	127477031	Neg1	0	-	127475864	127477031	0,0,255
chr7	127477031	127478198	Neg2	0	-	127477031	127478198	0,0,255
chr7	127478198	127479365	Neg3	0	-	127478198	127479365	0,0,255
chr7	127479365	127480532	Pos5	0	+	127479365	127480532	255,0,0
chr7	127480532	127481699	Neg4	0	-	127480532	127481699	0,0,255

3.2 Histone marks and chromatin accessibility

