BMEG3105 Lecture 17

WU Sio Fong 1155173201

1.Cancer

Definition of cancer:

Disease in which some of the body's cells grow uncontrollably and spread to other parts of the body

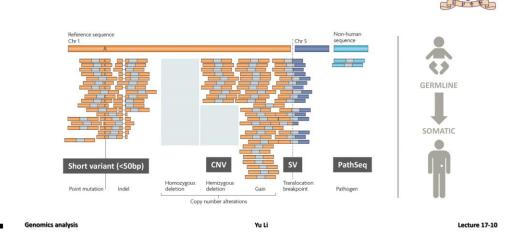
- How to study cancer?
 - Genetic variants
 - Genome
 - Gene fusion (RNA-seq)
 - Abnormal gene expression
 - Genome (genetic information)
 - Epigenome (environment)
 - Transcriptome (direct measurement)

2. Overview of today lecture

- ✤ Genome
 - Variant calling
 - GWAS
- RNA-seq
 - Gene fusion---structural variant
- Epigenome
 - Peak calling

3.Genome

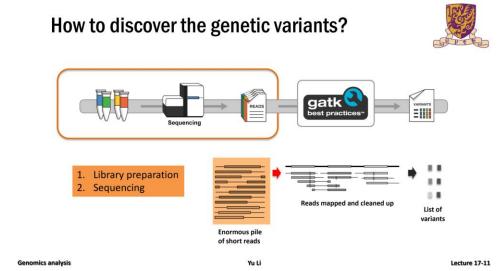
✤ Variant calling


Reason:

- 3.2 billion sites in the human genome
 - Any 2 humans share 99.5% DNA
 - Can efficiently describe a genome with relation to a reference
- Genetic differences can lead to differences in disease risk and response to treatment
- Genetic variation can used to find genes and variants that contribute to disease
- Cancer: genetic variants at multiple levels

Types of variant calling:

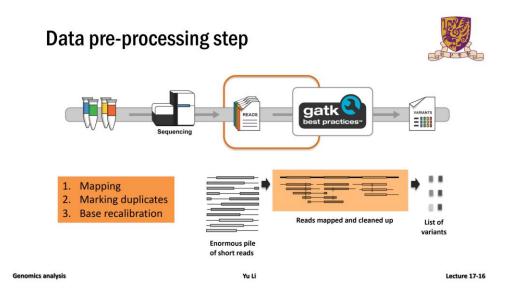
- Short variant: point mutation, indel(<50bp)
- CNV: homozygous deletion, hemizygous deletion, gain


- SV: translocation breakpoint (gene shift from other location)
- PathSeq: pathogen (non-human)

Different types of genomic variants

Ways to discover genetic variants:

Library preparation and sequencing


Variants VS errors

actual variation (real change)

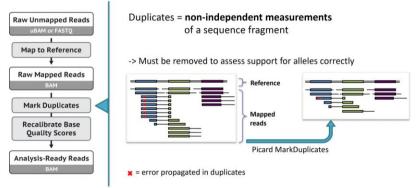
errors (artifacts) -- Errors creep in on various levels

- PCR artifacts (amplification of errors)
- Sequencing (errors in base calling)
- Alignment (misalignment, mis-gapped alignments)
- Variant calling (low depth of coverage, few samples)
- Genotyping (poor annotation)

Procedure for data pre-processing:

Step1: map the reads produced by the sequence to the reference Input: FASTQ, a text-based format for storing both a biological sequence and its corresponding quality scores.

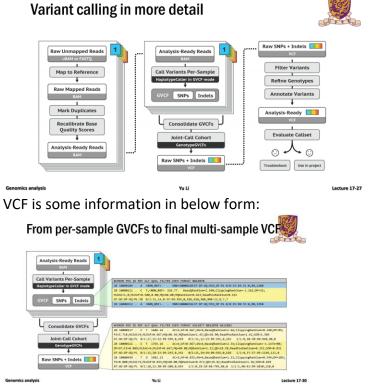
Output: SAM/BAM.


SAM: Sequence Alignment Map (store in text)

BAM: Binary Alignment Map (story in binary only i.e., 1& 0)

The following pictures are FASTQ and BAM format respectively.

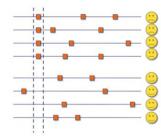
Input format: FASTQ		Output format: Sequence (SAM/BAM)	e/Binary Alignment Map
РАТО Об на нарак: ебясти и представание и представание и представание и представание и представание и представание и представание ставание и представание и представание и представание и представание и представание и представание и представани на представание и представание и на представание и п По представание и пре		HEADER lines starting with @ symbol describin @ Ws1.1.6 @iccoardinate — BAM header @ Strong Ltd.194893 — Reference seq @ Strong Ltd.194893 — Reference seq	line
@SRR6407486.1 1 length=100 CCTCGTCTACAGCGACAAC GATTTGACCTAC	Sequence name GTCGAAGTG DNA sequence	erg ID:A SH:SAMPLE_A —— Read group(s)	
+SRR6407486.1 1 length=100 BBBBBFFFFFFFFFFFFFF FBFFFFFFFF	Quality line break	RECORDS containing structured read information	on (1 line per read/record)
Bas Qua	e: T lity: 7	read name position CIGAR SLX1:1:127:63:4 99 1 10052169 60 23M6810M =	read sequence metadala
Outsility eccent as ASCII characters:	e Q = -10log _{te} P _{erter}	flags MAPQ mate i Added mapping info summarizes position, qualit Mate information points to the read from the oth	
Genomics analysis Yu Li	8.949)	http://somtools.github.io/hts-specs/SAMv1.pdf Lecture 17-19 Genomics analysis	Yu Li Lecture 17-21


Step2: mark duplication to reduce duplications which come from some experimental manipulations.

Error may be due to noise/ error/ duplicate (we must do this to avoid we mistake error as real variance)

Variant calling:

After analysis of data from the above operations, we want to find variants from reads, so we do:

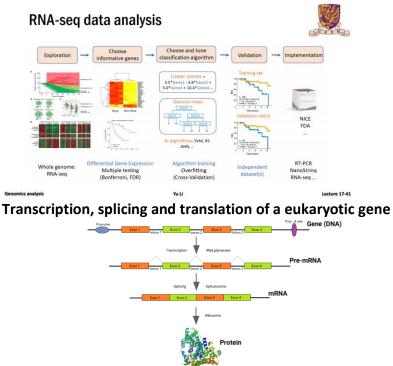


However, after analysis of genomes, we should **joint some data together** to conclude a result because a single genome data is always unpowered, a joint call set could provide more valuable information.

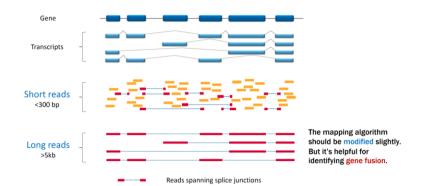
4. Further downstream analysis for cancer diseases:

GWAS:

Trying to determine whether specific gene variant is related to a disease



Spot the variant that is common amongst all affected but absent in all unaffected

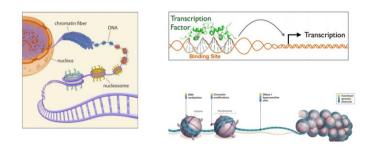

The ideal case (for some rare Mendelian diseases)

To find the correlation between SNPs to diseases: Bonferroni correction --adjust P-value Adjusted p-value= p-value/ number of tests

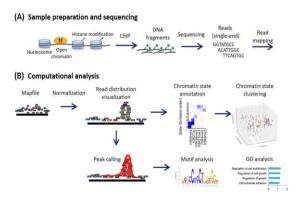
RNA-seq data analysis (genetic variant level to study cancer) A basic procedure of RNA-seq data analysis

Mapping spanning splice junctions

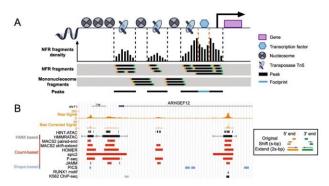
Gene fusion:


G

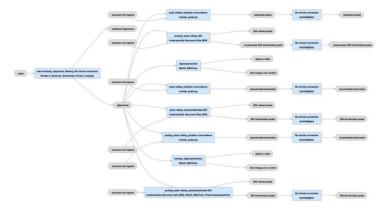
- Novel gene formed by fusion of two distinct wild type genes
- Is a specific kind of structural variant related to cancer
- In cancer: produced by somatic genome rearrangements

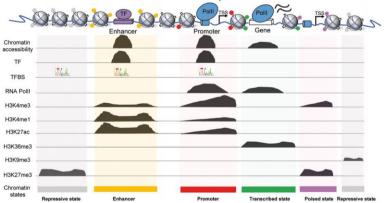

RNA-seq for §				
Gene A	Exon 2	Exon 1 Exon 2	Exon 3	- Gene B
	Fus	sion gene DNA		
Break-points are in introns We need whole genome sequer Whole exome sequencing is not				
	Fusie	on gene RNA		
nomics analysis	than WGS, especially wi	- <mark>-seq</mark> requires much less s ith long reads u Li	equencing	Lecture 17-46

5.Epigenome


Structure of epigenome

The overall data analytics pipeline for epigenetics


Peak calling


The output of	peak calling(Browser	Extensible Data	BED) format)	

track	name="ItemRGB	Demo" descrip	tion="It	em RGB	dem	onstration"	visibility=2	itemRgb="0n"
chr7	127471196	127472363	Pos1	0	+	127471196	127472363	255,0,0
chr7	127472363	127473530	Pos2	0	+	127472363	127473530	255,0,0
chr7	127473530	127474697	Pos3	0	+	127473530	127474697	255,0,0
chr7	127474697	127475864	Pos4	0	+	127474697	127475864	255,0,0
chr7	127475864	127477031	Neg1	0	-	127475864	127477031	0,0,255
chr7	127477031	127478198	Neg2	0	-	127477031	127478198	0,0,255
chr7	127478198	127479365	Neg3	0	-	127478198	127479365	0,0,255
chr7	127479365	127480532	Pos5	0	+	127479365	127480532	255,0,0
chr7	127480532	127481699	Neg4	0	-	127480532	127481699	0,0,255

The Entire Detailed Pipeline (ATAC-seq as an example)

Histone marks and chromatin accessibility

