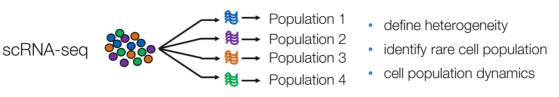
Name: TRAN Thi Trang SID: 1155132888 BMEG3105 Fall 2023

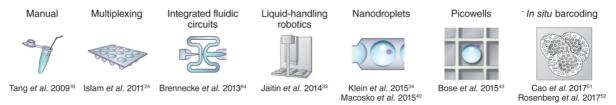
Lecture 19: Single cell RNA sequencing (short)

Expected outcomes:

- Understand the definition and purposes of single-cell RNA sequencing
- Method of getting single-cell RNA-seq
- Single-cell RNA-seq data analytics


Contents:

- 1. Why single-cell analysis
- Applications of bulk RNA-seq
 - > Can only find disease biomarker at tissue level with lower resolution
 - Gene expression comes from different types of cells
 - Limited application to comparative transcriptomics and homogenous systems


- comparative transcriptomics
- expression disease biomarker
 - homogenous systems

- Applications of scRNA-seq
 - Study heterogeneity of tissues
 - Identify and analyse rare cell population
 - Study cell population dynamics (cell composition, dissection of temporal changes) Examples:
 - Differentiation paths
 - Cancer heterogeneity
 - Neural cell classification
 - Embryonic development
 - Drug treatment response

2. Definition

- Single cell sequencing examines the sequence information from individual cells with optimized next-generation sequencing (NGS) technologies, providing a higher resolution of cellular differences and a better understanding of the function of cellular differences and a better understanding of the function of an individual cell in the context of its microenvironment
 - 3. Method for scRNA-seq
- Step 1: Single cell isolation
 Different methods

Step 2: Sequencing

Paplexi et al. 2017	FACS C	CyTOF	qPCR	Plate-based protocols (STRT- seq, SMART-seq, SMART-seq2)	Fluidigm C1	Pooled approaches (CEL-seq, MARS- seq, SCRB-seq, CEL-seq2)	Massively parallel approaches (Drop-seq, InDrop)
Cell capture method		Mass cytometry	Micropipettes	FACS	Microfluidics	FACS	Microdroplets
Number of cells per experiment	Millions N	Millions	300–1,000	50–500	48-96 🗙	500-2,000	5,000-10,000
Cost	\$0.05 \$ per cell	\$35 per cell	\$1 per cell	\$3–6 per well	\$35 per cell	\$3–6 per well	\$0.05 per cell
Sensitivity		Jp to 40 narkers	10–30 genes per cell	7,000–10,000 genes per cell for cell lines; 2,000–6,000 genes per cell for primary cells	6,000–9,00 genes per cell for cell lines; 1,000–5,000 genes per cell for primary cells	7,000–10,000 genes per cell for cell lines; 2,000–6,000 genes per cell for primary cells	5,000 genes per cell for cell lines; 1,000–3,000 genes per cell for primary cells
Cell flow Laser O Deflection multi-well plate						Culter Culter Single Cell Cell 1. Cell 1. Cell 500	RT Peolo Remove Oil Ibx Barcoded CDM Viling of individual cells

- Step 3: Data analytics
 - Pre-processing
 - Quality control
 - Normalization
 - Data correction (e.g. batch)
 - Feature selection
 - Dimensionality reduction
 - Cell-cell distances
 - Unsupervised clustering
 - ...
 - Downstream analysis