Data Type

- Sequential Data: In a sequence where order matters
- Data Matrix: A collection of records (n rows) and a fixed set of attributes (m columns)
- Spatial Data: Geographic locations and spatial information involved
- Temporal Data: Data involving time (with built-in support)
- Graph or Networks: Object connections
- Text: Sentences and documents
- Multi-Modality Data: Involving 2 or more kinds of data types
- Unknown Data Type: Data not shown

Python Programming

- Numpy: An additional plug-in to make Python more powerful

Python	Meaning
import numpy	Imports the entire numpy library into the Python file
a = [1,2,3,4,5]	Store the array [] in a variable a
numpy.mean(a)	Calculate the mean value stored in a
numpy.std(a)	Calculate the standard deviation stored in a
numpy.median(a)	Calculate the median value stored in a
numpy.max(a)	Calculate the maximum value stored in a
print(a)	Output the value stored in variable a
print("a")	Output a (inside the quotation mark "")

Sequence Data

- For Central Dogma, Genetic information in DNA sequences
- 1. DNA sequence
 - A, T, C, G
 - 3 billion pairs
 - Doubled strand
- 2. RNA sequence
 - A, U, C, G
- 3. Protein sequence

- 20 amino acids
- Multiple sequence alignment
- Get sequence by
 - 1. Nanopore sequencing
 - DNA goes through chemical pore
 - Sequencing by detecting electrical current change caused by different bases
 - Long (3Mb)
 - High error rate
 - 2. Protein sequencing
 - Break long chains into short and short will be determined by mass spectrometry (weight)
 - Form raw sequence from short
- Raw Data and Handling
 - 1. DNA sequence
 - Step 1: Quality Control
 - Step 2: Mapping
 - Mark duplicates, sort and merge alignments
 - Step 3: Variant calling
 - Variations recalibration, scoring, and filtering
 - Step 4: Phenotype-associated variant
 - Link genetic variant to phenotype (observable trait)
 - 2. Protein sequence
 - Compare and multiple sequence alignment
 - Sequence-to-structure-to-function paradigm
 - Similar sequence = similar structure = similar function
 - Homology
 - Similar sequence = common ancestor

Sequence Comparison and Alignment Score

Compare 2 sequences by

- 1. Sequence Alignment: Determine similarity and its region
 - Biomolecular Functions and property prediction for
 - Sequence-to-structure-to-function paradigm
 - Evolution, identifying conservation regions, investigating mechanisms for Homology
- 2. Pairwise sequence alignment: maximise 2 sequences' similarity by inserting gaps and score an alignment
 - Match (remain), Mismatch (substitute), Gap (insert or delete)
 I. Enumeration: calculate scores for all possible alignments, highest score = most similar
 - II. Dynamic Programming: length n, $(2n n) = (2n)!/(n!)^2$