BMEG3103

Pairwise alignment

- 1. Enumeration all possible alignments
- 2. Calculate score
- 3. Choose the alignment with the highest score

no of possible alignments:

$$\binom{2n}{n} = \frac{(2n)!}{(n!)^2}$$

Dynamic Programming

- 1. Large problem \rightarrow Small subproblems
- 2. Solve small subproblems recursively, find optimal solutions
- Combine optimal solutions for subproblems → an optimal solution for large problem

diagonal: +2

Down/ Right: gap, -10

note: add gap first, then write the subsequent base (ATCG)

down	add gap to first sequence	
right	add gap to second sequence	

Try coding method (Python)

from Bio import pairwise2

alignments = pairwise2.align.globalxx("ACCGT", "ACG")

from Bio.pairwise2 import format_alignment

print(format_alignment(*alignments[0]))