
To find the optimal alignment

- Traceback:
 - 1. Starting from the bottom right box (-4 in this example)

		А	С	С	G
	0 —	→ -10—	→ -20—	→ -30 —	→-40
Α	-10	2 –	→ -8 -	→ -18—	→-28
С	-20	-8	4 -	→ -6 —	→ -16
G	-30	-18	-6	-3	-4

- 2. Traceback along the arrows (blue arrow)
- 3. When there is more than one arrow, traceback to the larger number

4. Until the 0 box (top left box with the first number)

Summary

- Sequence alignment identifies sequence similarity
- Given an alignment and the scoring matrix, calculate the alignment score
- Dynamic programming to find the optimal alignment by dividing the original problem into smaller problems and solving them recursively.
- DP table stores answers to sub-problems and construction path

Local alignment: highest number of the whole table

Global alignment: only care about the bottom right cell

DP is efficient because hopeless alignments won't be calculated in the DP table Scoring matrix: define similarity

Biopython: Another plug-in function for alignment

BLOSUM (BLOcks SUbstitution Matrix): substitution matrix for sequence alignment of proteins

- Mismatch because of mutation
- Gap because of insertion, deletion, gene duplication
- Different scoring matrices used because built from different database

Sequence Data

- Assumption of the central dogma
- Genetic information is in DNA/ RNA sequences
- Phenotype = Genotype (determined by sequence) + environment
- Gene expression different = phenotype different, because human genomes are similar

Gene Expression Matrix

- Row: different genes
- Column: Conditions / Sample cells

Transit sequence data into a matrix

- 1. RNA sequencing: cut long DNA into small RNA pieces (reads)
- 2. Mapping: find the location of reads in the genome
- 3. Count the number of reads in each gene
- 4. Build a gene expression matrix

Genome sequence: by assembling