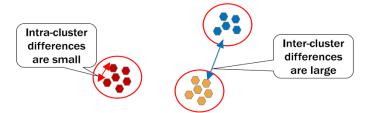
Data analytics for personalized genomics and precision medicine

Lecture 7: Clustering

Lecturer: Yu LI (李煜) from CSE

Scriber: KANNAPPAN, Kannammai (1155163190)


Friday, 27th September 2024

1. Clustering Introduction:

"Finding groups of objects such that the objects in a group will be similar (related) to one another and different from (or unrelated to) the objects in other groups."

Clustering is a process to group objects with similar properties/characteristics which can help to:

- Understand data: insight into data distribution, pre-processing step for many algorithms
- Summarize data: reduces large data sets into several groups, preserve patient privacy

Why is it important to cluster?

General Applications:	Biological Application :
- Better organisation \rightarrow Faster	Genes:
searching.	- Can identify co-expressed genes:
- Example: shopping online by	- Suggesting similar
category.	function/pathway
	- Can identify differentially expressed
People:	genes:
- Clustered by age, gender, etc.:	- Gene correlation to disease
- For analysing treatment based	cause.
on cluster of people.	
- Cluster by interest:	Cells/Samples:
- To target products based on	- Can identify new disease type:
need of group.	- Develop personalised treatments
- •	for this group.
	- To identify new cell types.

2. Clustering with a computer:

Order of process:

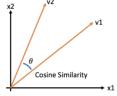
- 1. Feed the computer with data
- 2. Label each piece of data
- 3. Pass through clustering algorithm.
- 4. Output is data grouped with a clustering ID representing each group.
- 5. Check the efficiency of clustering

Like sequence comparison we need 3 things to cluster data:

- Data
- Similarity Measurement (Criteria for grouping objects)
- Clustering algorithm (Operational method)

3. Similarity and Dissimilarity Measurement

×	×
Quantify how alike 2	Quantify how different 2
objects are	objects are
- Higher = more alike	- Lower = more alike
- Range: [0,1]	- Range: [0, upper limit
	depends on data]

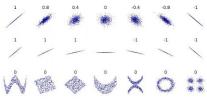

A. Cosine Similarity:

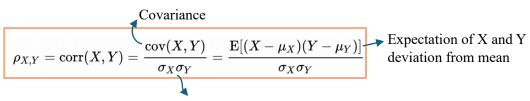
Measures the similarity between two vectors, d₁ and d₂:

- By calculating the angle between them and using the cosine of the angle between the two vectors.
- As since $\cos(0) = 1$ then both vectors align therefore similar and can cluster together.

Formula:

$$\cos(d_1, d_2) = \frac{d_1 \cdot d_2}{(|d_1| \cdot |d_2|)} \quad \stackrel{\text{is vector dot product}}{|d| \text{ is the length of vector}}$$




B. Correlation:

Measuring linear relationship between data points:

- By measuring how likely to variables change together e.g. if x increases and y also increases/decreases then higher correlation.
- If data similar, then correlation is close to 1 (positively correlated) or -1 (negative correlated) then can cluster together.

 \circ No similarity then correlation = 0. Formulas:

$$corr(X,Y) = \frac{(X - \mu_X)(Y - \mu_Y)}{(X - \mu_X)^2(Y - \mu_Y)^2}$$

C. Minkowski Distance:

Measuring distance between two points (p, q) in a m dimensional space.

- \circ Generalised formula of the Euclidean distance (dimension = 2)
- This tool can be used to measure the dissimilarity of the two points. Therefore smaller distance between data points means they can be clustered together.

Formula:

$$dist(\mathbf{p}, \mathbf{q}) = \left(\sum_{k=1}^{m} |p_k - q_k|^r\right)^{\frac{1}{r}}$$

 $\label{eq:r} \begin{array}{l} r = parameter \\ m = number \ of \ dimensions \ (attributes) \\ p_k/q_k = Value \ of \ p/q \ in \ the \ k-th \ dimension \ (attribute) \end{array}$

Types of Minkowski distance when r is fixed:

- \circ City block/Manhattan/Taxicab L₁ norm distance
 - r=1
 - Calculates the sum of the distance in each dimension
 - $dist(p,q) = \sum_{k=1}^{m} |p_k q_k|$
 - Example:
 - $p_1 = (0,2), p_2 = (2,0)$
 - Distance $(p_1, p_2) = |0-2| + |2-0| = 4$
- o Euclidean distance
 - r=2
 - Length of a straight line between two data points within m dimensions
 - $Ed(p,q) = \sqrt{\sum_{k=1}^{m} (p_k q_k)^2}$
 - Normalisation is necessary is attributes (dimensions) differ in levels of measurement.
 - Example:
 - $p_1 = (0,2), p_2 = (2,0)$

• Distance
$$(p_1, p_2) = \sqrt{(0-2)^2 + (2-0)^2} = \sqrt{8} = 2.828$$

- Supremum distance/ L_{max} , L_{∞} distance
 - r → ∞
 - Maximum difference in any component of the vector.
 - Calculate all difference of the vector in each dimension the supremum distance is the maximum value.
 - $dist(p,q) = \max|p_k q_k|$
 - Example:
 - $p_1 = (0,2), p_2 = (2,0)$
 - Distance $(p_1, p_2) = \max(|0-2|, |2-0|) = 2$

Visualisation of different Minkowski distances:

Red = Manhattan distance Blue = Euclidean Distance Green = Supremum distance

All Figures are from Prof. Li BMEG 3105 Lecture 7 Notes