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Lecture 7: Clustering
Lecture Date: 27 Sept. Deadline: 04 Oct. 11:59 p.m.

Lecturer: Prof. LI Yu Scribe: LIU Linqi

1 Recap from Last Lecture

1.1 Sequence Mapping
• Method: Slide each read along the genome, calculate the difference.

• Each time, we may use dynamic programming to calculate the difference.

1.2 Data Exploration and Cleaning
• Data cleaning: Denoise, remove outliers, handle missing data, remove duplicates, and nor-

malize data.

• Data exploration: Summary statistics, including mean, median, range, variance, percentiles.

• Visualization: Histograms and box plots.

1.3 Percentiles
• Given an ordinal or continuous attribute x and a number p between 0 and 100, the p-th

percentile is a value of x such that p% of the observed values of x are less than xp.

• Sort N values of attribute x in decreasing order. The N × (1− p/100)-th value corresponds
to the p-th percentile.

• When p = 50, x50 is close to the median value.

2 Introduction to Clustering

2.1 Why Clustering?
• Cluster items: Better organization, faster searching

• Cluster people: Different needs for diffirent groups

• Cluster in biology:
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– Cluster genes to identify co-expressed or differentially expressed genes.

– Cluster samples or cells to identify new disease sub-types or cell types.

2.2 What is Clustering?
Definiation Clustering is about finding groups of objects that are similar to each other within the
group (intra-cluster) and different from other groups (inter-cluster).

2.3 How to Do Clustering?

Data
Output:

clustering indicator
Clustering methods

3 Similarity and dissimilarity measurement
• Similarity: Measures how alike two data objects are, often in the range [0,1].

• Dissimilarity (Distance): Measures how different two objects are, with a minimum of 0.

3.1 Cosine Similarity
If d1 and d2 are two vectors, then the cosine similarity between them is defined as:

cos(d1,d2) =
d1 · d2

|d1| × |d2|
where · denotes the dot product of the vectors, and |d| represents the magnitude of vector d.

Figure 1: Example of cosine similarity in 2D space. [1]
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3.2 Correlation
The correlation coefficient is defined as:

ρX,Y =
Cov(X,Y )

σXσY

=

∑
(Xi − X̄)(Yi − Ȳ )√∑

(Xi − X̄)2 ·
√∑

(Yi − Ȳ )2

where:

• Cov(X,Y ) is the covariance between X and Y ,

• σX and σY are the standard deviations of X and Y respectively.

Correlation measures the linear relationship between objects.

• ρX,Y = 1 indicates a perfect positive linear relationship.

• ρX,Y = −1 indicates a perfect negative linear relationship.

• ρX,Y = 0 indicates no linear relationship.

Figure 2: Different correlation coefficients and their corresponding scatter plot shapes. [1]

3.3 Euclidean Distance
Euclidean distance measures the straight-line distance between two points in Euclidean space. It
is defined as:

Ed(X,Y ) =

√√√√ n∑
i=1

(Xi − Yi)2

where:

• n is the number of dimensions (attributes).

• Xi and Yi are, respectively, the i-th attributes (components) or data objects X and Y .
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3.4 Minkowski Distance
Minkowski Distance is a generalization of Euclidean Distance. It is defined as:

d(X,Y ) =

(
n∑

i=1

|Xi − Yi|p
) 1

p

where:

• p is a parameter that determines the type of distance.

• n is the number of dimensions (attributes).

• Xi and Yi are, respectively, the i-th attributes (components) or data objects X and Y .

Manhattan Distance When p = 1, this represents the City block (Manhattan, taxicab, L1 norm)
distance:

d(X,Y ) =
n∑

i=1

|Xi − Yi|

Euclidean Distance When p = 2, it represents the Euclidean distance.

Supremum Distance As p → ∞, it becomes the supremum distance (L∞ norm), which is
defined as:

d(X,Y ) = max
i

(|Xi − Yi|)

This represents the maximum difference between any component of the vectors.

4 Hierarchical Clustering
This topic would be covered in the next lecture.
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