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SID: 1155193602

Scribing: Lecture 7 — Clustering

1. Clustering

Why clustering?
1. Cluster items
»  Better organization: helps in arranging information or items systematically.
»  Faster searching: enables quicker retrieval of information
2. Cluster people
»  Patients: different treatment for different groups
- Children, elderly
»  Customers: different groups with different needs
- Not necessarily grouping the people by age or gender
- Optimize the product based on the need of the targeting group
3. Cluster genes
»  Identify co-expressed genes
- Involved in the same pathway
»  Identify differentially expressed genes
- Related to diseases
4. Cluster samples/cells
»  Identify new disease sub-types
»  Identify new cell types

What is clustering analysis?
Definition:
»  Finding groups of objects such that the objects in a group are similar (or related)

to one another and different from those in other groups.
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Application of clustering analysis:
» As astand-alone tool to get insight into data distribution
»  As apre-processing step for other algorithms
» Examples:
- group related documents for browsing
- group genes and proteins that have similar functionality
- group stocks with similar price fluctuations
- discover new groups (cell types)
Summarization:
»  Reduce the size of large data sets

»  Preserve privacy (e.g., in medical data)

What are needed to do clustering?
1. Data to be clustered
2. Similarity measurement

3. Clustering algorithm (the executive procedure)

2. Similarity and dissimilarity measurement

Similarity and dissimilarity

Similarity

»  Numerical measure of how alike two data objects are

»  Higher when objects are more alike

»  Often falls in the range [0,1]

Dissimilarity (distance)

»  Numerical measure of how different are two data objects
»  Lower when objects are more alike

»  Minimum dissimilarity is often 0
>

Upper limit varies

Cosine similarity
» If dy and d, are two vectors, then

dl' dz

cos(dy, d;) = (Idsl+ldz)



- Where - indicate vector dot product and |d| is the , "

length of the vector d

vl

- Acosine similarity of 1 indicates that the vectors are

identical in direction, while a cosine similarity of 0

Cosine Similarity

indicates that they are orthogonal (completely dissimilar). *

» Example
d,=3205000200
d,=1000000102
d, ed,= 3*1+2*0+0*0+5*0+0*0+0*0 +0*0 +2*1+0*0+ 0*2=5
[1d, || = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)°5 = (42) 95 = 6.481
[1d,| = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2) 95 = (6) 05 = 2.245
cos(d,, d,)=0.3150
Correlation

»  Correlation measures the linear relationship between objects

cov(X,Y)  EB[(X — px)(Y — py)]
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pxy = corr(X,Y) =
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» Example

gSubtract Mean Calculate ab, a2 and b2

Temp °C Sales “a” “p” axb a? b?
142 $215 45 -$187 842 203 34,969
164  $325 23 -$77 177 53 5,929
119  $185 6.8 -$217 1,476 462 47,089
152  $332 35 -$70 245 123 4,900
185  $406 02 $4 -1 0.0 16
22.1 $522 34 $120 408 116 14,400
194  $412 0.7 $10 7 05 100
25.1 $614 6.4 $212 1,357 410 44944
234  $544 47 $142 667 221 20,164
18.1 $421 06 $19 -1 04 361
226  $445 39 $43 168 15.2 1,849
172  $408 15 $6 9 23 36
187  $402 5,325 177.0 174,757

e Calculate Means Sum Up

177.0 x 174,757



Euclidean distance

|
| m

Ed(p,q)=\2 (pi—q,)

k=1
»  Where m is the number of dimensions (attributes) and p, and gq; are,
respectively, the k-th attributes (components) or data objects p and gq.

» Normalization is necessary, if scales of different dimension differ

»  Example
3
point X y
1
2¢° ol 0 )
p3 p4
1 ° ° p2 2 0
02 p3 3 1
0 S ‘ p4 5 I
0o 1 2 3 4 5 8
pl p2 p3 p4
pl 0 2828 3.162 5.099
p2 2.828 0 1414 3.162
p3 3.162 1.414 0 2
p4 5.099 3.162 2 0

Minkowski distance

»  Minkowski Distance is a generalization of Euclidean Distance

m 1

dist (p, qf)=(iZl pi—a,l)
» Where r is aparameter, m is the number of dimensions (attributes) and p,
and g, are, respectively, the k-th attributes (components) or data objects p and
q.
» Different cases of Minkowski Distance:
B r =1. City block (Manhattan, Taxicab, L) distance
- e.g. Hamming distance, which is the number of bits that are different
between two binary vectors

B r =2. Euclidean distance
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B r —oo. “supremum” (L4, norm, L, norm) distance

- This is the maximum difference between any component of the vectors

» Example

L1 pl p2 p3 p4

pl 0 4 4 6

p2 4 0 2 4

p3 4 2 0 2

p4 6 4 2 0

point X v L2 pl p2 p3 pd
pl 0 2 pl 0 2.828 3.162 5.009
p2 2 0 P2 2828 0 1414 3.162
p3 3 1 p3 3.162 1.414 0 2
pd 3 1 p4 5.099 3.162 2 0

L, pl p2 p3 M
pl 0 2 3 5
p2 2 0 1 3
p3 3 1 0 2
p4 5 3 2 0

3. Hierarchical clustering

Hierarchical clustering

»  Produces a set of nested clusters organized as a hierarchical tree
Can be visualized as a dendrogram

A tree like diagram that records the sequences of merges

They may correspond to meaningful taxonomies

YV V V V

Gene clusters, phylogeny reconstruction, animal kingdom. ..
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Steps of hierarchical clustering
1. Compute the Similarity or Distance matrix

Let each data point be a cluster

2

3. Merge the two closest clusters

4. Update the similarity or distance matrix
5

Repeat step 3 and step 4 until only a single cluster remains



Methods to update the distance matrix after merging?

» Min

»  Max i

> Group average Cianca’?

» Distance between centroids

A running example
Gene wt mutant_1 mutant_2 mutant_3
At4g35770 1.5 3 3 1.5
At1g30720 4 7.5 7.5 5
At4g27450 15 1 1 1.5
At2g34930 10 25 23 15
At2g05540 1] 1 2 1

Use correlation (linear correlation) to compute the data matrix

XY E[(X — Y —
pxy = corr(X,Y) = cov( ) _ [ px)( py )]
Oxoy ox0oy

Then, we will get this

At4g35770 |At1g30720 |At4g27450 |At2g34930 At2g05540
At4g35770 |1
At1g30720/0.9733 1

At4g27450 |1 F0.9733 1
At2g34930/0.9493 0.9909 +0.9493 1
At2g05540/0.5774 0.562 +0.5774 0.4528 1

Let each gene be a cluster and remove the 1 in the matrix
Merge the two closest clusters, At1g30730 and At2g34930, as the correlation
coefficient between them is the largest (0.9909)

At4g35770 |At1g30720 [At4g27450 |At2g34930 |At2g05540

At4g35770
At1g307200.9733
At4g27450 1 +0.9733
At2g34930/0.9493 0.9909 -0.9493
At2g05540|0.5774 0.562 -0.5774 0.4528

| — |

Update with minimum distance (largest correlation)

IAt4g35770 At1g30720 |At4g27450 |At2g34930 [At2g05540

\At4g35770
At1g30720|0.9733
r0.9733
IAt4g27450 (1 ->-0.9493
0.9493
At2g34930>0.9733 10.9493

0.4528
IAt2g05540(0.5774 0.562 F0.5774 >0.562




5. Merge At2g34930, At1g30720 and At4g35770

At4g35770 [At1g30720 [At4g27450 |At2g34930 [At2g05540

At4g35770
At1g30720 [0.9733
At4g27450 [1 [0.9493
At2g34930(0.9733 10.9493
At2g05540(0.5774  |0.562 l0.56774  [0.562

e

6. Update with minimum distance (largest correlation)

At4g35770 [At1g30720 |At4g27450 |At2g34930 |At2g05540

At4g35770
At1g30720

L1
At4g27450 |>-0.9493 }0.9493
At2g34930 10.9493

0.562 0.562
At2g05540|0.5774 ->0.5774 0.5774 1>0.5774

7. Merge At2g34930, At1g30720, At4g35770, and At2g05540

At4g35770 [At1g30720 [At4g27450 [At2g34930]At2g05540
At4g35770

At1g30720

At4g27450 [0.9493  }0.9493

At2g34930 l0.9493

At2g05540(0.5774 [0.5774 [0.5774 [0.5774

8. Update with minimum distance (largest correlation)

At4g35770 [At1g30720 |At4g27450 [At2g34930 [At2g05540
oy 4835770
At1g30720
il Atag27450 [0.5774  [0.5774
neats  LUAt2g34930 L0.5774
At2g05540 L0.5774




