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1. Clustering 

Why clustering? 

1. Cluster items 

➢ Better organization: helps in arranging information or items systematically. 

➢ Faster searching: enables quicker retrieval of information 

2. Cluster people 

➢ Patients: different treatment for different groups 

- Children, elderly 

➢ Customers: different groups with different needs  

- Not necessarily grouping the people by age or gender 

- Optimize the product based on the need of the targeting group 

3. Cluster genes 

➢ Identify co-expressed genes 

- Involved in the same pathway 

➢ Identify differentially expressed genes 

- Related to diseases 

4. Cluster samples/cells 

➢ Identify new disease sub-types 

➢ Identify new cell types 

What is clustering analysis? 

Definition: 

➢ Finding groups of objects such that the objects in a group are similar (or related) 

to one another and different from those in other groups. 

Key Concepts:  

➢ Intra-cluster differences are small 

➢ Inter-cluster differences are large  

 



Application of clustering analysis:  

➢ As a stand-alone tool to get insight into data distribution 

➢ As a pre-processing step for other algorithms 

➢ Examples:  

- group related documents for browsing 

-  group genes and proteins that have similar functionality 

-  group stocks with similar price fluctuations 

-  discover new groups (cell types) 

Summarization: 

➢ Reduce the size of large data sets 

➢ Preserve privacy (e.g., in medical data) 

What are needed to do clustering? 

1. Data to be clustered 

2. Similarity measurement 

3. Clustering algorithm (the executive procedure) 

2. Similarity and dissimilarity measurement 

Similarity and dissimilarity 

Similarity 

➢ Numerical measure of how alike two data objects are 

➢ Higher when objects are more alike 

➢ Often falls in the range [0,1] 

Dissimilarity (distance) 

➢ Numerical measure of how different are two data objects 

➢ Lower when objects are more alike 

➢ Minimum dissimilarity is often 0 

➢ Upper limit varies 

Cosine similarity 

➢ If 𝑑1 and 𝑑2 are two vectors, then  

 𝑐𝑜𝑠(𝑑1, 𝑑2) =
𝑑1⋅ 𝑑2

(|𝑑1|∗|𝑑2|)
 



- Where ⋅ indicate vector dot product and |𝑑| is the 

length of the vector 𝑑 

- A cosine similarity of 1 indicates that the vectors are 

identical in direction, while a cosine similarity of 0 

indicates that they are orthogonal (completely dissimilar).  

➢ Example  

Correlation 

➢ Correlation measures the linear relationship between objects 

➢ Example 

 



Euclidean distance 

 

➢ Where 𝑚 is the number of dimensions (attributes) and 𝑝𝑘 and 𝑞𝑘 are, 

respectively, the 𝑘-th attributes (components) or data objects 𝑝 and 𝑞. 

➢ Normalization is necessary, if scales of different dimension differ 

➢ Example 

Minkowski distance 

➢ Minkowski Distance is a generalization of Euclidean Distance 

 

➢ Where 𝑟 is a parameter, 𝑚 is the number of dimensions (attributes) and 𝑝𝑘 

and 𝑞𝑘 are, respectively, the 𝑘-th attributes (components) or data objects 𝑝 and 

𝑞. 

➢ Different cases of Minkowski Distance: 

◼ 𝑟 = 1. City block (Manhattan, Taxicab, 𝐿1) distance 

- e.g. Hamming distance, which is the number of bits that are different 

between two binary vectors 

◼ 𝑟 = 2. Euclidean distance 



◼ 𝑟 → ∞ . “supremum” (𝐿𝑚𝑎𝑥 norm, 𝐿∞ norm) distance 

- This is the maximum difference between any component of the vectors 

➢ Example 

 

3. Hierarchical clustering 

Hierarchical clustering 

➢ Produces a set of nested clusters organized as a hierarchical tree 

➢ Can be visualized as a dendrogram 

➢ A tree like diagram that records the sequences of merges 

➢ They may correspond to meaningful taxonomies 

➢ Gene clusters, phylogeny reconstruction, animal kingdom… 

  

Steps of hierarchical clustering 

1. Compute the Similarity or Distance matrix 

2. Let each data point be a cluster 

3. Merge the two closest clusters 

4. Update the similarity or distance matrix 

5. Repeat step 3 and step 4 until only a single cluster remains 

 



Methods to update the distance matrix after merging? 

➢ Min  

➢ Max  

➢ Group average  

➢ Distance between centroids  

 

A running example 

 

1. Use correlation (linear correlation) to compute the data matrix 

 

Then, we will get this 

 

2. Let each gene be a cluster and remove the 1 in the matrix 

3. Merge the two closest clusters, At1g30730 and At2g34930, as the correlation 

coefficient between them is the largest (0.9909) 

 

4. Update with minimum distance (largest correlation) 

 



5. Merge At2g34930, At1g30720 and At4g35770 

 

6. Update with minimum distance (largest correlation) 

 

7. Merge At2g34930, At1g30720, At4g35770, and At2g05540 

 

8. Update with minimum distance (largest correlation) 

 


