Scribing: Lecture 7 – Clustering

<u>1. Clustering</u>

Why clustering?

- 1. Cluster items
 - > Better organization: helps in arranging information or items systematically.
 - > Faster searching: enables quicker retrieval of information
- 2. Cluster people
 - > Patients: different treatment for different groups
 - Children, elderly
 - > Customers: different groups with different needs
 - Not necessarily grouping the people by age or gender
 - Optimize the product based on the need of the targeting group
- 3. Cluster genes
 - Identify co-expressed genes
 - Involved in the same pathway
 - Identify differentially expressed genes
 - Related to diseases
- 4. Cluster samples/cells
 - Identify new disease sub-types
 - Identify new cell types

What is clustering analysis?

Definition:

Finding groups of objects such that the objects in a group are similar (or related) to one another and different from those in other groups.

Key Concepts:

- Intra-cluster differences are small
- Inter-cluster differences are large

Application of clustering analysis:

- > As a stand-alone tool to get insight into data distribution
- > As a pre-processing step for other algorithms
- ➢ Examples:
 - group related documents for browsing
 - group genes and proteins that have similar functionality
 - group stocks with similar price fluctuations
 - discover new groups (cell types)

Summarization:

- > Reduce the size of large data sets
- Preserve privacy (e.g., in medical data)

What are needed to do clustering?

- 1. Data to be clustered
- 2. Similarity measurement
- 3. Clustering algorithm (the executive procedure)

2. Similarity and dissimilarity measurement

Similarity and dissimilarity

Similarity

- Numerical measure of how alike two data objects are
- Higher when objects are more alike
- ➢ Often falls in the range [0,1]

Dissimilarity (distance)

- > Numerical measure of how different are two data objects
- Lower when objects are more alike
- Minimum dissimilarity is often 0
- Upper limit varies

Cosine similarity

> If d_1 and d_2 are two vectors, then

$$cos(d_1, d_2) = \frac{d_1 \cdot d_2}{(|d_1| * |d_2|)}$$

- Where \cdot indicate vector dot product and |d| is the length of the vector d
- A cosine similarity of 1 indicates that the vectors are identical in direction, while a cosine similarity of 0 indicates that they are orthogonal (completely dissimilar).

➢ Example

```
\begin{array}{l} d_1 = \ \mathbf{3205000200} \\ d_2 = \ \mathbf{1000000102} \\ \\ d_1 \cdot d_2 = \ \mathbf{3^{+}1} + 2^{*}0 + 0^{*}0 + 5^{*}0 + 0^{*}0 + 0^{*}0 + 0^{*}0 + 2^{*}1 + 0^{*}0 + 0^{*}2 = 5 \\ ||d_1|| = (3^{*}3 + 2^{*}2 + 0^{*}0 + 5^{*}5 + 0^{*}0 + 0^{*}0 + 0^{*}0 + 2^{*}2 + 0^{*}0 + 0^{*}0)^{0.5} = (42)^{0.5} = 6.481 \\ ||d_2|| = (1^{*}1 + 0^{*}0 + 0^{*}0 + 0^{*}0 + 0^{*}0 + 0^{*}0 + 1^{*}1 + 0^{*}0 + 2^{*}2)^{0.5} = (6)^{0.5} = 2.245 \\ \cos(d_1, d_2) = 0.3150 \end{array}
```

Correlation

Correlation measures the linear relationship between objects

➢ Example

Euclidean distance

$$Ed(p, q) = \sqrt{\sum_{k=1}^{m} (p_k - q_k)^2}$$

- Where *m* is the number of dimensions (attributes) and p_k and q_k are, respectively, the *k*-th attributes (components) or data objects *p* and *q*.
- > Normalization is necessary, if scales of different dimension differ
- ➢ Example

point	X	у
p1	0	2
p2	2	0
p3	3	1
p4	5	1
	-	-

	p1	p2	p3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
p3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Minkowski distance

Minkowski Distance is a generalization of Euclidean Distance

$$dist(p,q) = (\sum_{k=1}^{m} |p_k - q_k|^r)^{\frac{1}{r}}$$

- Where r is a parameter, m is the number of dimensions (attributes) and p_k and q_k are, respectively, the k-th attributes (components) or data objects p and q.
- Different cases of Minkowski Distance:
 - r = 1. City block (Manhattan, Taxicab, L_1) distance
 - e.g. Hamming distance, which is the number of bits that are different between two binary vectors
 - r = 2. Euclidean distance

- $r \to \infty$. "supremum" (L_{max} norm, L_{∞} norm) distance
- This is the maximum difference between any component of the vectors
- ➢ Example

point	x	у
p1	0	2
p2	2	0
p3	3	1
p4	5	1

L1	p1	p2	p3	p4
p1	0	4	4	6
p2	4	0	2	4
p3	4	2	0	2
p4	6	4	2	0
L2	p1	p2	p3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
p3	3.162	1.414	0	2
p4	5.099	3.162	2	0
L_{∞}	p1	p2	p3	p4
p1	0	2	3	5
p2	2	0	1	3
p3	3	1	0	5 3 2
p4	5	3	2	0

3. Hierarchical clustering

Hierarchical clustering

- > Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
- > A tree like diagram that records the sequences of merges
- > They may correspond to meaningful taxonomies
- Gene clusters, phylogeny reconstruction, animal kingdom...

Steps of hierarchical clustering

- 1. Compute the Similarity or Distance matrix
- 2. Let each data point be a cluster
- 3. Merge the two closest clusters
- 4. Update the similarity or distance matrix
- 5. Repeat step 3 and step 4 until only a single cluster remains

Methods to update the distance matrix after merging?

- Min
- ► Max
- Group average
- Distance between centroids

A running example

Gene	wt	mutant_1	mutant_2	mutant_3
At4g35770	1.5	3	3	1.5
At1g30720	4	7.5	7.5	5
At4g27450	1.5	1	1	1.5
At2g34930	10	25	23	15
At2g05540	1	1	2	1

1. Use correlation (linear correlation) to compute the data matrix

$$ho_{X,Y} = \operatorname{corr}(X,Y) = rac{\operatorname{cov}(X,Y)}{\sigma_X\sigma_Y} = rac{\operatorname{E}[(X-\mu_X)(Y-\mu_Y)]}{\sigma_X\sigma_Y}$$

Then, we will get this

	At4g35770	At1g30720	At4g27450	At2g34930	At2g05540
At4g35770	1				
At1g30720	0.9733	1			
At4g27450	-1	-0.9733	1		
At2g34930	0.9493	0.9909	-0.9493	1	
At2g05540	0.5774	0.562	-0.5774	0.4528	1

- 2. Let each gene be a cluster and remove the 1 in the matrix
- 3. Merge the two closest clusters, At1g30730 and At2g34930, as the correlation coefficient between them is the largest (0.9909)

	At4g35770	At1g30720	At4g27450	At2g34930	At2g05540
At4g35770					
At1g30720	0.9733				
At4g27450	-1	-0.9733			
At2g34930	0.9493	0.9909	-0.9493		
At2g05540	0.5774	0.562	-0.5774	0.4528	

4. Update with minimum distance (largest correlation)

	At4g35770	At1g30720	At4g27450	At2g34930	At2g05540
At4g35770					
At1g30720	0.9733				
		-0.9733			
At4g27450	-1	->-0.9493			
	0.9493				
At2g34930	->0.9733		-0.9493		
				0.4528	
At2g05540	0.5774	0.562	-0.5774	->0.562	

5. Merge At2g34930, At1g30720 and At4g35770

		At4g35770	At1g30720	At4g27450	At2g34930	At2g05540
	At4g35770					
r	At1g30720	0.9733				
I	At4g27450	-1	-0.9493			
Ļ	At2g34930	0.9733		-0.9493		
	At2g05540	0.5774	0.562	-0.5774	0.562	

6. Update with minimum distance (largest correlation)

		At4g35770	At1g30720	At4g27450	At2g34930	At2g05540
	At4g35770					
L D	At1g30720					
		-1				
	At4g27450	->-0.9493	-0.9493			
્ય	At2g34930			-0.9493		
			0.562		0.562	
	At2g05540	0.5774	->0.5774	-0.5774	->0.5774	

7. Merge At2g34930, At1g30720, At4g35770, and At2g05540

		At4g35770	At1g30720	At4g27450	At2g34930	At2g05540
—	At4g35770					
۱ı	At1g30720					
Ч	At4g27450	-0.9493	-0.9493			
_ L	At2g34930			-0.9493		
	At2g05540	0.5774	0.5774	-0.5774	0.5774	

8. Update with minimum distance (largest correlation)

		At4g35770	At1g30720	At4g27450	At2g34930	At2g05540
	At4g35770					
	At1g30720					
Node1	At4g27450	-0.5774	-0.5774			
	At2g34930			-0.5774		
	At2g05540			-0.5774		