
Lec 8 : Clustering & Classification

Hierarchal Clustering

y just a nested cluster

What are the steps ?

- 1) compute similarity distance
- 2) merge
- 3) update
- 4) repeat 1)-3) until the data is all clustered

How ?

						(i) choose similarity distance
Gene	wt	mutant_1	mutant_2	mutant_3	м	() choose structury distance
At4g35770	1.5	3	3	1.5	2.25	– Euclidean
At1g30720	4	7.5	7.5	5	6	
At4g27450	1.5	1	. 1	1.5	1.25	– Minkowski
At2g34930	10	25	23	15	28.25	_ cosine
At2g05540	1	. 1	. 2	1	1.25	
						- correlation

corr(X,yY) = <u>E[(X-mx)(Y-Yx)]</u> &x &y

1 calculate similarity distance

Find correlation between gene types At 1930-20 and AT 4935-70

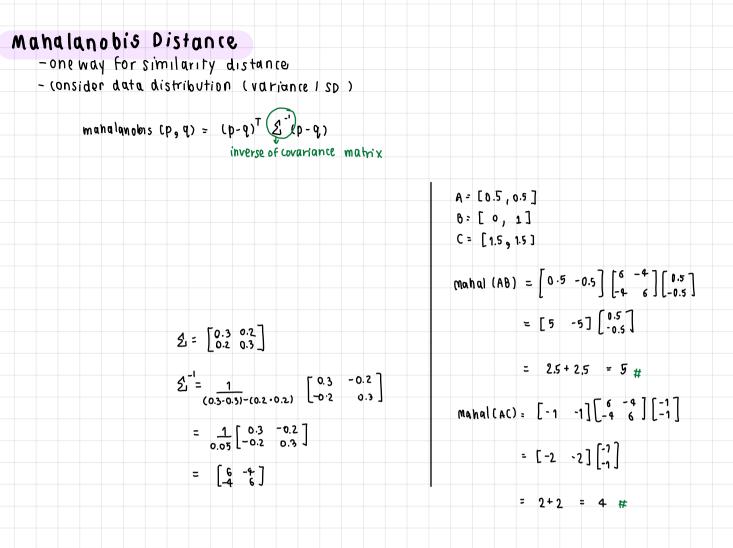
MX=2.25	(ov(x,y) =	(1.5-2.25)(4-6)+(3-2.25)(7.5-6)+(3-2.25)(7.5-6)+(1.5-2.25)(5-	<u>6</u>)
My = 6		4	
6 _X = 0.75	=	1.125	
6y = 1.541	(01+(×94) =	1.125 = 0.9734	
•		0.75+1.541	

	At4g3577ø	At1g30720	At4g27450	At2g34930	At2g05540
At4g35770	1. 🇸				
At1g30720	0.9733	1			
At4g27450	-1	-0.9733	1		
At2g34930	0.9493	0.9909	-0.9493	1	
At2g05540	0.5774	0.562	-0.5774	0.4528	1

		At4g35770	At1g30720	At4g27450	At2g34930	At2g05540
	At4g35770	1				
-	At1g30720	0.9733	1			
	At4g27450	-1	- 0.9493	1		
	At2g34930	0.9733		-0.9493	1	
	At2g05540	0.5774	0.562	-0.5774	0.562	1

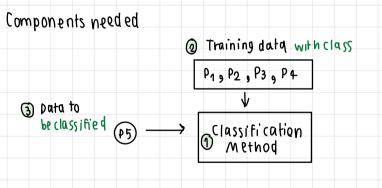
4930 At2g05540
^በ ዋ <u>1</u>
,

		At4g35770	At1g30720	At4g27450	At2g34930	At2g05540
-	At4g35770	1				
٢	At1g30720	-	1			
	At4g27450	- 0.9493	-0.9493	1		
Ч	At2g34930			-0.9493	1	
	At2g05540	-		-0.5774		1


A++927450

() choose the best pair and merge

(hoose 0. 9909 of At1930720 , At29 34930


@ choose scoring matnx

· chouse max clargest correlation)

Classification

- method to assign class of previously unseen records based on the attributes & training set

* Data should be hormalized

Н	0	W	?
	v		

Davaan	llo:sht/	Maiaht/	Candan	O normalization
Person		Veight(<g)< td=""><td>Gender</td><td>this one we choose min-max normalization</td></g)<>	Gender	this one we choose min-max normalization
P1	1.79 7	75	Μ	(P1) Height: 1.79 - 1.64 = 0.625
P2	1.64 5	54	F	1.98 - 1.64
Р3	1.70 6	53	Μ	weight: <u>75 - 54</u> = 0.875 78 - 54
Р4	1.88 7	78	Μ	
Р5	1.75 7	70	??	as a result
Person	Height \	Neight	Gender	Distance calculation of P5 with other
P1	0.625 0.	.875	М	
P2	0 0		F	P1 and P5
Р3		.375	М	
P4	1 1		М	Euclidean = (0.4583-0.625) ² +(0.875-0.666 distance
P5		.6667	??	a > a = 0.2668
	0.1000 0.			Hesult
Perso	n P5	G	ender	
P1				3 Identify the K most similar data K= 2
	0.267			P1 0.267 and P3 0.358
P2	0.809	F		both classify as M
P3	0.358	M		
P4	0.636	M		
P5		?7		(4) conclusion M
13	0			