BMEG3105

Recap of Lecture 7 <u>Clustering</u> <u>Hierachical clustering</u> <u>Mahalanobis distance</u> <u>Classification</u> <u>K-nearest neighbors classification (KNN)</u> <u>KNN code example</u> Comparison

Recap of Lecture 7

Clustering analysis

- Find groups of objects
 - similar to one another
 - different from other groups

Minkowski distance

r=1: Manhattan distance, L_1 norm

 $\bullet \ |y_2-y_1|+|x_2-x_1|\\$

r=2: Euclidean distance, L_2 norm

•
$$\sqrt{(y_2-y_1)^2+(x_2-x_1)^2}$$

r→∞: Supremum distance, L_{max} or L_∞ norm

$$dist(\mathbf{p}, \mathbf{q}) = \left(\sum_{k=1}^{m} |p_{k} - q_{k}|^{r}\right)^{\frac{1}{r}}$$

$$\lim_{\substack{r \to \infty \\ r \to \infty}} d_{i}^{t} st(p,q) = \lim_{\substack{r \to \infty \\ r \to \infty}} \left[\sum_{\substack{k=1 \\ k \in \mathbb{Z}}} |p_{k} - q_{k}|^{r} \right]^{\frac{1}{r}}$$

Clustering

- small intra-cluster distance, large inter-cluster distance
- distance matrix: Cosing similarity, Correlation, Euclidean distance, Manhattan distance, Mahalanobis distance

Hierachical clustering

- nested cluster \rightarrow dendrogram \rightarrow taxonomies
 - dendrogram: tree-like diagram with merging clusters

• taxonomies eg: phylogenetic tree, gene clustering...

Steps:

- 1. Compute distance matrix
- 2. Let each data point be a cluster

- 3. Merge two closest clusters
- 4. Update distance matrix until only a single cluster remain

Updating distance matrix:

• min, max, group average distance, centroids distance

Explaining lecture examples:

distance matrix = correlation

range of Pearson's correlation: 0 - 1, higher = more correlated

$$ho_{X,Y} = \mathrm{corr}(X,Y) = rac{\mathrm{cov}(X,Y)}{\sigma_X\sigma_Y} = rac{\mathrm{E}[(X-\mu_X)(Y-\mu_Y)]}{\sigma_X\sigma_Y}$$

		At4g35770	At1g30720	At4g27450	At2g34930	At2g05540
	At4g35770					
	At1g30720	0.9733				
	At4g27450	-1	-0.9733			
Ч	At2g34930	0.9493 _Г	0.9909	-0.9493		
	At2g05540	0.5774	0.562	-0.5774	0.4528	
			🛶 highest valı	16		

the cell with highest value is related to gene2 and gene4

• gene2 and gene4: same cluster

construct another table, eliminating the cell with highest value

		At4g35770	At1g30720	At4g27450	At2g34930	At2g05540
	At4g35770					
	At1g30720	0.9733				
			-0.9733			
	At4g27450	-1	->-0.9493			
Γ		0.9493				
4	At2g34930	->0.9733		-0.9493		
					0.4528	
	At2g05540	0.5774	0.562	-0.5774	->0.562	

check all the cells related to gene2 or gene4

cell (2,3): -0.9733 → -0.9493

- cell (2,3) = -0.9733 is related to gene2
- cell (3,4) = -0.9493 is related to gene4

-0.9733 < -0.9493

cell (2,3) < cell (3,4)

cell (2,3) \rightarrow cell (3,4)

repeat the process until only one cluster remains

nodal tree can also be constructed

			At4g35770	At1g30720	At4g27450	At2g34930	At2g05540
No	Node1	At4g35770					
NO		At1g30720					
		At4g27450	-0.5774	-0.5774			
Node		At2g34930			-0.5774		
		At2g05540			-0.5774		

Mahalanobis distance

- calculating distance considering data distribution
- how many standard deviation away

eg1:

set 1 contains A, B; set 2 contains C, D

- A-B = 1, std = 10
- C-D = 1, std = 1

eg2:

Mahalanobis distance: generalization of Euclidean distance

• when attributes are correlated, have different ranges of values (different variances)

- distribution is approximately Gaussian (normal distribution)
- gives less emphasis to the direction of largest variance than Euclidean

• If the attributes are relatively uncorrelated, but have different ranges, then standardizing the variables is sufficient.

Classification

class or category \subset attributes or features \subset records or training set

(innermost)

(outermost)

• assign class of unseen data, based on attributes & training set

Step:

- 1. Training data with calss
- 2. Trained by specified classification method
- 3. Input new data
- 4. Output of result

K-nearest neighbors classification (KNN)

- store all available instances
- classify new instance based on distance metric

Step:

- 1. Training-1: store all available instances
- 2. Training-2: normalization of data
- 3. Training-3: compute distance
- 4. Prediction-1: identify K most similar data
- 5. Prediction-2: mode class / return most frequent class label among K instance

Choose:

- value of K
 - range: 5-10 (for low-dimensional data set)
 - \circ cross-validation
- weighing function (closer data point = higher weighting)

Note:

Updating the distance matrix \rightarrow \mathbf{X} need original data matrix

KNN code example

```
>>> X = [[0], [1], [2], [3]]
>>> y = [0, 0, 1, 1]
>>> from sklearn.neighbors import KNeighborsClassifier
>>> neigh = KNeighborsClassifier(n_neighbors=3)
>>> neigh.fit(X, y)
KNeighborsClassifier(...)
>>> print(neigh.predict([[1.1]]))
[0]
>>> print(neigh.predict_proba([[0.9]]))
[[0.666... 0.333...]]
```

scikit-learn library

Comparison

Clustering vs classification

	Clustering	Classification
Goal	Find similarity (clusters) in the data	Assign class to the new data
Data	Data without class	Training data with class and testing data without class
Classes	Unknown number of classes	Known number of classes
Output	The cluster index for each point	The class assignment of the testing data
Algorithm	One phase	Two phases (training and application)

Unsupervised vs Supervised learning:

	Unsupervised learning	Supervised learning	
Function	analyse and cluster unlabelled data	Classify and predict outcomes, trained on labelled data	
Example	clustering & dimension reduction	classification & regression	