

Clustering & Classification

1 Clustering

1.1 why clustering

- goal
 - o better organise things
 - o get faster searching
- very common & almost everywhere
- clustering in biology
 - o cluster genes
 - identify co-expressed genes that are involved in same pathway
 - identify differentially expressed genes related to diseases
 - o cluster samples & cells
 - identify new disease sub-types
 - very useful to develop more effective/efficient medicine
 - part of developing precision medicine
 - identify new cell types
- e.g. shopping sites: shop by category
- e.g. cluster people
 - patients
 - different treatment for different groups
 - children vs. elderly → hospital specialisations
 - o customers
 - different groups with different needs
 - not necessarily grouping people by age or gender
 - optimise product based on need of targeting group

1.2 clustering analysis

- definition: Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups
 - intra cluster differences are small (within a group)
 - o inter cluster differences are large (between 2 groups)
- it's everywhere
 - o used for understanding
 - as stand-alone tool to get insight into data distribution
 - as pre-processing step for other algorithms
 - e.g. group related documents for browsing
 - group genes & proteins that have similar functionality
 - group stocks with similar price fluctuations
 - discover new groups \rightarrow e.g. cell types
 - o for summarisation

- to reduce size of large data sets
- to preserve privacy \rightarrow e.g. in medical data
- principle
 - o needed:
 - data to be clustered
 - similarity measurement
 - clustering algorithm = executive procedure
 - o give pictures to computer
 - change pictures to data \rightarrow pixels with values = matrix
 - o cluster methods
 - o output: clustering indicator

1.3 similarity & dissimilarity

- Similarity
 - \circ ~ Numerical measure of how alike two data objects are
 - o Higher when objects are more alike
 - Often falls in the range [0,1]
- Dissimilarity (distance)
 - o Numerical measure of how different are two data objects
 - o Lower when objects are more alike
 - Minimum dissimilarity is often 0
 - Upper limit varies

1.3.1 Cosine similarity

- If d1 & d2 are 2 vectors then: $\cos(d1,d2) = \frac{d1*d2}{(|d1|*|d2|)}$
 - With * indicating vector dot product
 - With |d| the length of vector d

o E.g.

 $d_1 = 3205000200$ $d_2 = 1000000102$

 $\begin{array}{l} d_1 \bullet d_2 = \ 3^*1 + 2^*0 + 0^*0 + 5^*0 + 0^*0 + 0^*0 + 0^*0 + 2^*1 + 0^*0 + 0^*2 = 5 \\ ||d_1|| = (3^*3 + 2^*2 + 0^*0 + 5^*5 + 0^*0 + 0^*0 + 0^*0 + 2^*2 + 0^*0 + 0^*0)^{0.5} = (42)^{0.5} = 6.481 \\ ||d_2|| = (1^*1 + 0^*0 + 0^*0 + 0^*0 + 0^*0 + 0^*0 + 1^*1 + 0^*0 + 2^*2)^{0.5} = (6)^{0.5} = 2.245 \end{array}$

 $\cos(d_1, d_2) = 0.3150$

1.3.2 Correlation

- Measures linear relationship between objects
- Shows whether 2 properties/variables are changing together or not
- Formula: $\rho X, Y = corr(X, Y) = \frac{cov(X,Y)}{\sigma x \sigma y} = \frac{E[(X \mu x)*(Y \mu y)]}{\sigma x \sigma y}$
 - With cov = covariance
 - With sigma = standard deviation of x and y
 - With E(...) = expectation of each point minus the variation
- Principle:
 - \circ Calculate means: μx and μy
 - Subtract means: $x \mu x = a$ and $y \mu y = b$
 - \circ Calculate ab, a² and b²
 - o Sum up
 - Calculate correlation

1.3.3 Euclidian distance

- Formula: $Ed(p,q) = \sqrt{\sum_{k=1}^{m} (pk qk)^2}$
 - With m = number of dimensions
 - With pk and qk = k-th attributes/components/data objects p and q
- Normalisation necessary because scales of different dimensions differ
- Results in distance matrix with each cell containing a data point

1.3.4 Minkowski distance

- Generalisation of Euclidian distance
- Formula: $dist(p,q) = (\sum_{k=1}^{m} |pk qk|^r)^{\frac{1}{r}}$
 - With r = parameter
 - With m = number of dimensions/attributes
 - With pk & qk = k-th attributes/components/data objects p & q
- Special cases
 - o r = 1
 - Manhattan distance/city block distance/taxicab/L1 norm
 - Common example: Hamming distance = number of bits that are different between 2 binary vectors
 - o r = 2
 - Euclidian distance
 - o **r** = ∞
 - supremum
 - L max norm
 - Maximum difference between any component of the vectors
 - $\text{Lim}(r \rightarrow \infty) = |pk qk|$

1.4 Hierarchical clustering

- Rearrangement of entire columns to organise data
- Goal is to identify groups/clusters withing the gene expression matrix

- Produces set of nested clusters organised as hierarchical tree
- Can be visualized as dendrogram = tree like diagram that records sequences of merges
- May correspond to meaningful taxonomies
 - o Gene clusters
 - Phylogeny reconstruction
 - o Animal kingdom
- Steps
 - o Compute the Similarity or Distance matrix
 - Let each data point be a cluster
 - o Merge the two closest clusters
 - o Update the similarity or distance matrix
 - Need for original data matrix depends on how the distance is defined
 - For min/max: no need for original data matrix
 - For centroids: requires original data matrix
 - Repeat until only one single cluster remains
- How to update distance matrix after merging
 - 4 possibilities
 - As long as you can make your assumption clear it's fine
 - Minimum
 - Maximum
 - Group average
 - Distance between centroids = between middle point of 2 clusters

1.5 Mahalanobis distance

- Calculates the distance considering the data distribution
- Formula: mahalanobis $(p,q) = (p-q)^T * \sum^{-1} (p-q)$
 - With Σ = covariance matrix
 - With -1 showing that the matrix is inverted:

determinant

- Useful when scales of 2 tests are not the same
 - Alternative: min-max normalisation of the tests to get them on the same scale
 This will give the same std for both tests
 - E.g. comparing the results of 2 students on 2 quizzes with different standard deviation
 - On both quizzes person A has 1 point more than student B
 - However the difference for them between both quizzes is not the same as on quiz 1 the std = 10 and on quiz the std = 1
 - So for quiz 2 student A can be the best of the class while student B is the worst of the class
- E.g. AB seems intuitively smaller than AC when just looking at the combining line, however it can be bigger than AC when considering distribution of the data set

1.6 Programming:

• Scikit-learn: https://scikit-learn.org/stable/

2 Classification

2.1 Why classification

- Goals:
 - o To determine characteristics of each class
 - E.g. when learning words as a kid you do this by classification
 - o To classify items
 - In order to get a better organisation
 - In order to know where to put new items
 - $\circ \quad \text{To classify people} \\$
 - Patients \rightarrow different treatment for different groups: elderly vs. kids
 - Customers \rightarrow is the person within the targeting group or not
- Why classification in biology
 - To determine whether a new gene expression profile is normal or a tumour

2.2 What is classification

- Find a method to assign the class of previously unseen records based on their other attributes + training set as accurately as possible
 - Start from a training set/collection of records
 - o Each record contains a set of features/attributes
 - One of the attributes is the class
- E.g. try to predict someone's gender, of which only height and weight are known, based on a training set with people with known height, weight & gender
 - The gender of the people in the training set is essential to allow determination of the unknown gender

2.3 How to do classification

• Needed:

- o Training set with class
- Classification method
- o Data to be classified
- Principle:
 - o Start from training set with class
 - \circ $\,$ Develop classification method based on the training set
 - o Collect data to be classified
 - o Classify the data using the developed classification method

2.4 K-nearest neighbours (KNN)

- Simple algorithm that stores all available instances & classifies new instances based on distance metric to available ones
- Data should be normalised!
- 2 phases
 - Training process = storing available training instances
 - Predicting process
 - Finding K training instances that are closest to query instance
 - Return most frequent class label among those K instances
- What to determine when using KNN
 - o Distance metric
 - Cosine similarity
 - Correlation
 - Euclidian distance
 - Manhattan distance
 - Mahalanobis distance
 - How many neighbours to look at = K \rightarrow number depends on definition
 - Weighing function
 - Optional
 - Different properties should be considered
 - Distance between data points can count, e.g. nearest neighbour will be more important than the 4th or 10th neighbour
- How to choose K
 - In practice:
 - Use value of K somewhere between 5 & 10 to get good result for most low-dimensional data sets
 - Good K can also be chosen by using cross validation (see later)
- Principle
 - Choose a distance metric & K

- o Normalise data
- o Compute distances
- o Identify K most similar data
- Take class out & find mode class
- o E.g.
 - Euclidian distance & K = 2

Person	Height(m)	Weight(kg)	Gender
P1	1.79	75	М
P2	1.64	54	F
P3	1.70	63	м
P4	1.88	78	Μ
P5	1.75	70	??

Min-max normalisation of data

Person	Height	Weight	Gender
P1	0.625	0.875	М
P2	0	0	F
P3	0.25	0.375	М
P4	1	1	М
P5	0.4583	0.6667	??

Compute distances of the normalised data with unknown person

Person	P5	Gender
P1	0.267	М
P2	0.809	F
P3	0.358	м
P4	0.636	М
P5	0	??

• Identify K most similar data

Person	P5	Gender
P1	<mark>0.267</mark>	M
P2	0.809	F
P3	<mark>0.358</mark>	M
P4	0.636	Μ
P5	0	??

• Take class out: male

2.5 Clustering vs. classification

	Clustering	Classification
	Intra-cluster differences are small	Data to be classified $P5 \longrightarrow Classification method M or F?$
What needed	-data to be clustered	-training data with class
	-similarity measurement	-classification method
	-clustering algorithm	-data to be classified
	= executive procedure	
Goal	Find similarity/clusters in data	Assign class to new data point
Data	Without class	1)Training data with class
	\rightarrow since we try to identify the	=annotated data
	category	2)Testing data without class
Classes	Unknown number	Known number
Output	Cluster index for each point	Class assignment of testing data
Algorithm	One phase	Two phases
	\rightarrow put clustering index	\rightarrow training: get classification method
		\rightarrow application: get result

2.6 Unsupervised vs. supervised learning

- Unsupervised learning
 - o Machine learning algorithms to analyse and cluster unlabelled data
 - E.g. clustering and dimension reduction
- Supervised learning
 - Machine learning algorithms to classify and predict outcomes, trained on labelled data
 - \circ $\,$ Annotation of data to guid us through the problem $\,$
 - E.g. classification and regression
- Biggest difference is the data

2.6.1 Machine learning

