1. Logistic function

Problem of KNN: 1. Need to store all data.

2. Need to calculate the distance matrix.

3. Slow predicting.

If we have a formula: $w_h H + w_w W + w_0 \ge 0.5$ $\frac{1}{1+e^{-(w_h H + w_w W + w_0)}} \ge 0.5$ (If wh, Ww, and w0 are large)

Training: fit the training data (how to choose wh, Ww and w0)

Make $\frac{1}{1+e^{-(w_hH+w_WW+w_0)}} \ge 0.5$ correct for the training data $Y^{output} = \frac{1}{1+e^{-(w_hH+w_WW+w_0)}}$

- ♦ (Y^{output}-Y)² should be as small as possible ->use calculus
- \diamond Y: the true label we have for training data
- \diamond It is the loss function we would like to minimise

Gradient descent algorithm

$$L = \sum_{P_1}^{P_4} (Y^{output} - Y)^2$$
 is a function of ws

For each w, we want to find a value to make the function value smallest

Step1. Initialise wh and Ww and W0 at any random value

Step2. For P1 to P4, calculate the output Y^{output}.

Step3. Update weights by $w_i = w_i + \Delta w_i$ $\Delta w_i = 2 * \alpha (Y - Y^{output}) \frac{\partial Y^{output}}{\partial w_i}$ α is a small constant

Step4. Repeat the above step until no more to update.

From Logistic regression to Neural Network	From L	ogistic	regression	to	Neural	Network
--	--------	---------	------------	----	--------	---------

Advantages	Fast prediction.		
	Successful in real-life problems		
	High tolerance to noisy data		
Disadvantages	Long training time		
	Poor interpretability		

Input nodes Output nodes

♦ Alphafold: the most successful deep learning application.

2. Binary classification evaluation

Which clustering method is better? Which classification should we trust?

- → Quantitative values are needed to summarise the performance of different methods.
- ♦ Confusion matrix

	Predicted class						
		Class=Yes	Class=No				
Actual class	Class=Yes	a(TP)	b(FN)				
	Class=No	c(FP)	d(TN)				

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

-However, there may be misleading for imbalanced data.

	Predicted class						
		Class=Yes	Class=No				
Actual class	Class=Yes	4949(TP)	O(FN)				
	Class=No	51(FP)	O(TN)				

Imbalanced classes

$$Accuracy = \frac{TP + TN}{TP + TN + FP + TN} = \frac{4949}{4949 + 51} = 0.99$$

Maybe misleading for imbalanced data

-Although we have **precision** (how many are correct among the predicted positive samples), **recall** (how many actual positive samples are predicted to be positive) and **F1 score** (the weight average of precision and recall) -> Still maybe misleading for imbalanced data.

	Р	Predicted class						
Actual		Class=Yes	Class=No					
class	Class=Yes	4949(TP)	O(FN)					
	Class=No	51(FP)	O(TN)					

$$Precision = \frac{a}{a+c} = \frac{4949}{4949+51} = 0.99 \qquad Recall = \frac{a}{a+b} = 1 \qquad F1 \ score = \frac{2*precision*recall}{presicion+recall} = 0.995$$

	Predicted class						
A		Class=Yes	Class=No				
class	Class=Yes	4949(TP)	O(FN)				
	Class=No	51(FP)	O(TN)				

*Look at the confusion matrix directly if you know it is an imbalanced dataset

Balanced accuracy =
$$0.5 * \left(\frac{TP}{TP + FN} + \frac{TN}{TN + FP}\right) = 0.5$$

Value is not absolute. Context matters.

3. Cross-validation

A technique for assessing how the result of a machine learning analysis will generalise to an independent data set -> measure the performance of models.

For one round cross-validation: Partitioning a set of data into complementary subsets.

Performing the analysis on one subset (training set).

Validating the analysis on the other subset (testing set).

n-fold cross-validation (train multiple times, leave out a disjoint subset of data each time for validation. Average the validation set accuracies)

Process:

- > Randomly partition data into n disjoint subsets
- For i = 1 to n
 - Validation Data = i-th subset
 - h <- classifier trained on all data except for Validation Data
 - Accuracy(i) = accuracy of h on Validation Data
- Final Accuracy = mean of the n recorded accuracies

Examples: 5-fold cross-validation

10 data points:		All Data					
>P1-P10		Training data					Test data
		Fold 1	Fold 2	Fold 3	Fold 4	Fold 5)
5-fold	Split 1	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	
P1-2, P3-4, P5-6, P7-8, P9-10	Split 2	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Einding Parameters
The grouping can be random	Split 3	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	
Annalas - Ando Borro - Instancias de Balandellario II	Split 4	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	
Procedure	Split 5	Fold 1	Fold 2	Fold 3	Fold 4 Final ev	Fold 5	Test data
P1-2's results based on the model from P3-1 >	0						L
≻P9-10's results based on the model from P1- ≻Averaging	8						

Leave-one-out cross-validation (a special case of n-fold cross-validation, where n=N)

Process:

> Partition data into N disjoint subsets, each containing one data point

≻For i = 1 to N

- Validation Data = i-th subset
- h <- classifier trained on all data except for Validation Data
- Accuracy(i) = accuracy of h on Validation Data

Final Accuracy = mean of the N recorded accuracies

4. Multi-class classification

- \diamond No need to change the algorithm for KNN but for logistic regression, we need to
- 1. Build a logistic regression for each class
- 2. When predicting, assign class with the highest value

- 3. When training, train 3*N parameters, where N=number of classes we have.
- 4. Considering each class as a binary classification problem.

Example:

$$Macro - average = \frac{0.9 + 0.95 + \dots + 0.7 + 0.2}{6} = 0.73$$

$$Micro - average = \frac{0.9 * 150 + \dots + 0.2 * 10}{150 + \dots + 10} = 0.85$$

Accuracy Cells Class 1 0.9 150 0.95 2 50 3 0.85 100 40 4 0.8 5 0.7 20 0.2 10 6

The low-performance of small classes will show up in Macro-average