Name: Mok Nga Sze

SID: 1155193690

Feature selection & dimension reduction

Lecture outline:

- 1) Why feature selection & dimension reduction
- 2) Feature selection
- 3) Dimension reduction (PCA, Example of PCA)

Why feature selection & dimension reduction

- 1) Bio-data can be huge
- Bio-data can be noisy, unrelated, and duplicated (We do not have to include all genes, combine them into one value is more useful)
 - Irrelevant genes
 - Highly correlated genes
 - Complementary genes

Benefit of feature selection and dimension reduction

- 1) Data compression
 - Efficient storage and retrieval
- 2) Improve prediction performance
 - Remove unrelated inputs
- 3) Understand the prediction results
 - What genes are related to the cancer prediction
- 4) Facilitate data visualization
 - Understand the distance between cells visually

Feature Selection/Extraction

- Select/extract the most relevant one to build better, faster, and easier to understand learning machines

How to reduce dimensionality

- 1) Feature selection
 - Choose the best subset genes from all the genes
 - Feature ranking
 - Feature subset selection: Filter and Wrapper
- 2) Feature extraction
 - Extract new features by linear or non-linear combination of the original features
 - New features may not have physical interpretation/meaning (usually for nonlinear)
 - PCA, SVD, Isomap, LLE, CCA...

Feature ranking

- Build better, faster, and easier to understand learning machines
- Discover the most relevant features w.r.t. target label

How to measure which ones are useful

- Correlation between feature and class
- Mutual information I (The higher I, the attribute is more related to the class)
- Fisher score F (The higher F, the attribute is more related to the class)

Issues of individual features ranking

- Relevance vs usefulness
- Leads to the selection of a redundant subset
- A variable that is useless by itself can be useful with others

Subset feature selection

- 1) Filter
 - Classification performance is not involved in the selection loop
 - Variance thresholds: Features with a higher variance contain more useful

information

- Information gain: Features should be different

		G1	G2	G3	G4
	S1	10	2	6	8
	S2	10	3	7	8
	S3	10	4	8	6
e.g.	S4	10	5	9	5

2) Wrapper

- Using the classification performance to guide selection
- Computational expensive

- Recursive feature elimination
- Sequential feature selection
- Process:
 - 1) Build a model for each feature and find out the best feature
 - 2) Add the second feature cross validation to check the performance
 - 3) Add feature until the new feature does not improve performance

		G1	G2	G3	G4	Cancer
	S1	10	2	6	8	Yes
	S2	10	3	7	8	Yes
	S 3	10	4	8	6	No
e.g.	S4	10	5	9	5	No

Principal components analysis (PCA)

- A two dimensional scatter of points that show a high degree of correlation
- We care about variance (information) and distance

- After vector space transform, we have more "efficient" description
- 1st dimension captures max variance
- 2nd dimension captures the max amount of residual variance, at right angles (orthogonal) to the first
- The 1st dimension may capture so much of the information content in the original data set that we can ignore the remaining axis

How to do PCA?

- Normalize each feature in a data matrix X to get X' so that the average of each feature is 0
- 2) Calculate the covariance matrix of X'

$$\Sigma = \frac{1}{n-1} X'^T X', \Sigma$$
: a d by d matrix

- 3) Find the eigenvectors and eigenvalues of Σ
- 4) The principal components are the M eigenvectors with the M largest eigenvalues
- 5) Project the data to the M eigenvectors' direction

$$\hat{X} = X'P$$

Example of PCA

- Matrix X:

X

X1	1	1	1
X2	2	2	2
X3	3	3	3

1) Normalization of X to X'

X1	-1	-1	-1
X2	0	0	0
X3	1	1	1
<i>X'</i>			

2) Calculate the covariance matrix of X'

$$\Sigma = \frac{1}{n-1} X'^{T} X' = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

3) Find the eigenvalues and vectors of Σ

$$\begin{split} \Sigma * V &= \lambda * V \\ |\Sigma - \lambda I| &= 0 \\ \begin{vmatrix} 1 - \lambda & 1 & 1 \\ 1 & 1 - \lambda & 1 \\ 1 & 1 & 1 - \lambda \end{vmatrix} = 0 \\ \begin{pmatrix} 1 - \lambda & 1 & 1 \\ 1 & 1 - \lambda & 1 \\ 1 & 1 & 1 - \lambda \end{vmatrix} = 0 \\ \begin{pmatrix} 1 - \lambda & 1 & 1 \\ 1 & 1 - \lambda & 1 \\ 1 & 1 & 1 - \lambda \end{vmatrix} * \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = 0 \\ \begin{pmatrix} (1 - \lambda)^3 + 1 + 1 - (1 - \lambda) \\ - (1 - \lambda) - (1 - \lambda) = 0 \\ \lambda_1 = 3 \\ \lambda = 3 \text{ or } \lambda = 0 \end{split}$$

 Subsituting the eigenvalues into the equation, we can find the respective eigenvectors

$$\lambda_1 = 3$$
 $V_1 = \begin{bmatrix} \frac{\sqrt{3}}{3} \\ \frac{\sqrt{3}}{3} \\ \frac{\sqrt{3}}{3} \\ \frac{\sqrt{3}}{3} \end{bmatrix}$ $\lambda_{2,3} = 0$ $V_{2,3} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

(The V1 here is normalized)

5) Project the data to M eigenvectors' direction

$$\mathbf{2D} \qquad P = \begin{bmatrix} \frac{\sqrt{3}}{3} & 0\\ \frac{\sqrt{3}}{3} & 0\\ \frac{\sqrt{3}}{3} & 0\\ \frac{\sqrt{3}}{3} & 0 \end{bmatrix} \qquad \qquad \hat{X} = X'P = \begin{bmatrix} -1 & -1 & -1\\ 0 & 0 & 0\\ 1 & 1 & 1 \end{bmatrix}^* \begin{bmatrix} \frac{\sqrt{3}}{3} & 0\\ \frac{\sqrt{3}}{3} & 0\\ \frac{\sqrt{3}}{3} & 0\\ \frac{\sqrt{3}}{3} & 0 \end{bmatrix} = \begin{bmatrix} -\sqrt{3} & 0\\ 0 & 0\\ \sqrt{3} & 0 \end{bmatrix}$$

6) Therefore, we can obtain a reduced data matrix:

X1	$-\sqrt{3}$	0
X2	0	0
X3	$\sqrt{3}$	0