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Outline of Lecture 14:
e Model underfitting and overfitting (advanced topic) (Slide: 3-13)
e Multi-omics overview (Slide: 14-27)
e Statistical testing (Slide: 28-42)
e Cancer genomics overview (Slide: 43-58)

I. Model underfitting and overfitting (advanced topic) (Slide: 3-13)

1. Underfitting:
® The model capacity is not enough
® In practice, we need to overfit the data first
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Underfit, Optimum and Overfit comparison

® How to make models with more capacity?
1. Increase the number of nodes
2. Increase the number of layers
3. Add non-linear function
4. Fully-connected layers:
® A general function approximator
® We can approximate any function (relation) if we have enough
nodes and layers
® Universal approximation theorem

2. Overfitting:
® What is Overfitting?
1. Statistically: the production of an analysis that corresponds too closely or
exactly to a particular set of data, and may therefore fail to fit



additional data or predict future observations reliably

2.Machine learning: the method is more complex than the problem, such
that it can perform well on the training dataset but does not perform
well on the testing dataset

® How to evaluate model and detect overfitting?
1. Train-validation-test split
2. Cross-validation

® How to deal with overfitting?
1. Data: Too little, not reflect the true distribution
2.Model: Too large, too many useless parameters
3. Connectivity: Too strong, co-adaptation
4.Parameter value range: Too large, model too flexible
5. Training time: Too long, tend to overfitting

II. Multi-omics overview (Slide: 14-27)

1. What is omics?

® Omics aims at the collective characterization and quantification of pools of
biological molecules that translate into the structure, function, and dynamics of an
organism or organisms

® Study biological entities in large scale

2. What is multi-omics?
® Multi-omics
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® Single-cell Multi-omics
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3. Pipelines:
® Genome pipeline

: Simple case: 1 library / sample / lane
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® Epigenome pipeline
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Pre-analysis
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® Transcriptome pipeline
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1. Variant calling

2.Peak calling

3. Peak differential analysis
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4. Differential gene expression analysis

5. Motif enrichment analysis
6. GO enrichment analysis



7.KEGG enrichment analysis
8. Genome-wide association study (GWAS)
9...

III. Statistical testing (Slide: 28-42)

1. Differential gene expression analysis

@ Statistical analysis to discover quantitative changes in expression levels between
experimental groups

® For a given gene, whether the gene expression difference is significant, other than
due to natural random variation

T-test
A kind of standard statistical test procedure
The purpose of t-test: Is there a significant difference between two sets of data?
General idea:
1. Calculate a test statistic based on the mean and variance of the data
2. Test statistic follows a Student’ s t-distribution
3. P-value: the probability that the result from the data occurred by chance:
® Along with test statistic, t-value
® The smaller p-value is, the more confident we are
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® How to do T-test:
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Usually, the p-value should be smaller than 0.05

® Different kinds of t-test
® Paired VS unpaired: For paired one, we cannotshuffle the values
® One-tailed test VS two-tailed test
® Two-tailed test: different or the same
® One-tailed test: greater, larger, smaller, at least

® For different t-test
® The formula to calculate t-value can be different
® The formula to translate t-value to p-value can be different
® But the t-test procedure is the same
® Eventually, we will say the two sets of numbers are different if p-value is



smaller than 0.05

3. Fisher’s exact test
® Fisher's exact test is a statistical significance test used in the analysis of
contingency tables

® Why is it called exact test?
® P-value can be calculated exactly from the table
® Recall t-test >We calculate a t-value
® Based on a distribution, we get the p-value

® How to do Fisher’ s exact test and calculate its p-value?
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set set
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IV. Cancer genomics overview (Slide: 43-58)

1. What is cancer?

® Cancer is a disease in which some of the body’ s cells grow uncontrollably and
spread to other parts of the body

2. Data analytics for cancer genomics

® (Genome: variant calling, genome association study

® Epigenome: what is it, peak calling, differential peak calling
® RNA-seq: DEG, gene fusion



