BMEG 3105 Fall 2024

Data analytics for personalized genomics and precision medicine Lecturer: Yu LI (李煜) from CSE

Lecture 16: Cancer genomics overview & genomics analysis (30/10/2024)

Scriber: Tom Yuet Yi (1155160583)

Cancer

- Disease with uncontrollable cell growth
- Symptom of spreading to other body parts
- Often identified as a genomic disease
 - → Study through genomics and multi-omics.

Multi-omics level: genome \rightarrow epigenome \rightarrow transcriptome \rightarrow proteome \rightarrow metabolome

Data Analytics for Cancer Genomics

Genome: variant calling, genome-wide association studies (GWAS)

- Variant calling

Genomic variant: difference of a genome with relation to a reference.

- \rightarrow Contribute to: disease risk, response to treatment, variants that contribute to disease
- \rightarrow Cancer have genetic variants at multiple levels.

Genetic variant or Errors?

Genetic variants: the actual change // Errors: artifacts that introduce to the analysis. Errors can be found at:

- PCR artifacts
- Sequencing
- Alignment
- Variant calling
- Genotyping

Steps of discovering the genetic variants:

Enormous pile of short reads in terms of uBAM or FASTQ (Library preparation, Sequencing) \rightarrow Reads mapped and cleaned up (Data pre-processing steps: 1) mapping, 2) marking duplicates, 3) base recalibration) \rightarrow obtain the list of variants

1) Map the reads produced to reference: input as uBAM or FASTQ, output as SAM or BAM Alignment structure summarised by CIGAR

2) Mark duplicates to mitigate duplication artifacts (duplicates are non-independent measurements of a sequence fragment and must be removed for alleles correctly) **Where does duplicates from?? \rightarrow Library (during PCR) or optical duplicates (during sequencing)

- Genome-Wide Association Studies (GWAS)

aim to identify associations between genetic variants and traits or diseases. The sheer number of SNPs (e.g., 3.5 million) complicates the detection of significant associations, solution? \rightarrow Bonferroni correction: Adjusted p-values are calculated to account for multiple testing, reducing the chance of false positives.

Adjusted p-value = p-value/number of tests

Suppose we have 1 million SNPs to test

Adjusted p-value = $\frac{0.05}{1,000,000}$ Adjusted p-value = 5×10^{-8}

1. -Seq Data Analysis

Gene Fusion - a specific kind of structural variant related to cancer

the first fusion gene was described in cancer cells Novel gene formed by fusion of 2distinct wild type genes

in cancer: produced by somatic genome rearrangement

A. Chromosomal Translocation

2. Epigenomics

Peak Calling:

- Peak calling is a key step in the epigenomics data analysis pipeline.
- It aims to identify regions of the genome with significantly higher signal compared to the background.
- This involves statistical testing to determine which peaks are genuine vs. random background.
- statistical testing is used to compares the peak shape to the random background signal.

- This allows distinguishing true peaks from noise.

Peak Calling Output:

- The output of peak calling is typically in Browser Extensible Data (BED) format.
- This includes the chromosome, start, end, and label/annotation for each identified peak.

The Epigenomics Data Analysis Pipeline:

(A) Sample preparation and sequencing

The Detailed Epigenomics Pipeline:

Lecture 16: Cancer genomics overview &genomics analysis (30/10/2024) Scriber: Tom Yuet Yi (1155160583)

