BMEG3105 Data analytics for personalized genomics and precision medicine

Week 6 Lecture 10

Cancer Genomics

By Cheung Ho Lun 1155174348 11/10/2024

1. About last lecture

Overfitting and underfitting

T-test (Purpose, general idea, formula)

Gene enrichment analysis (testing association)

Contingency tables

	In gene set	Not in gene set	Total
In pathway	100 (a)	9000 (b)	9100
Not in pathway	113 (c)	11000 (d)	11113
Total	213	20000	20213

Fisher's exact test

$$p = \frac{\binom{a+b}{a}\binom{c+d}{c}}{\binom{a+b+c+d}{a+c}} = \frac{(a+b)!(c+d)!(a+c)!(b+d)!}{a!b!c!d!(a+b+c+d)!}$$

2. Cancer genomics overview

Cancer: It is a disease in which some of the body's cells grow uncontrollably and

spread to other parts of the body.

How to study?

→ As cancer is believed to be a genomic disease, we can use multi-omics.

Genome -> Epigenome -> Transcriptome -> Proteome -> Metabolome

Genome: variant calling, genome association study

Epigenome: peak calling, differential peak calling

Exercise (UReply): Which would not be affected by epigenomic modification?

A. DNA sequence

- B. Gene expression
- C. The transcription process
- D. Disease and phenotype

3. Variants

Why do we care about variants?

→ Genetic variation is used to find genes and variants that contribute to disease.
 Different types of genomic variants:
 Short variant (point mutation, insertion, deletion) -> Copy number variant ->
 Structure variant -> Path sequence
 Steps to discover the genetic variants:
 I. Library preparation

II. Sequencing

(Recall the sequencing mapping from previous lecture)

Important: Difference between variants (real change) and errors (artifacts)

Error can creep in various level: PCR artifacts (amplification of errors) Sequencing (errors in base calling) Alignment (misalignment, mis-gapped alignment) Variant calling (low depth of coverage, few samples) Genotyping (poor annotation)

4. Data pre-processing step

Input format: FASTQ (How to read?)

Output format: Sequence/ Binary alignment Map (SAM/BAM)

HEADER lines starting with @ symbol describing various metadata for all reads

@HD	VN:1.6 SO:coordinate	 BAM header line
@sg	SN:seq1 LN:394893	Reference sequence dictionary entries
@sq	SN:seq2 LN:92783	noisienee eequenee aleaenary enance
@RG	ID:A SM:SAMPLE_A	Read group(s)

RECORDS containing structured read information (1 line per read/record)

read name		position	CIGAR		read sequence		metadata
		1					
SLX1:1:127:63:4 9	99 1	10052169 60	23M6N10M	= 14 10	GAAGATACTGGTT	768832'48::::	RG:Z:A
		1					
fla	as	MAP	Q ma	te informat	ion Pl	HRED quality score	es

- The information in the head belongs to mate information.
- MAPQ is about quality.
- Added mapping information summaries position, quality, and structure for each read.
- Mate information points to the read from the other end of the molecule.

Important: CIGAR

RefPos:	1	2	3	4	5	6	7		8	9
Reference:	С	С	A	т	A	С	т	-	G	A
Read:		С	A	т	-	С	т	A	G	

POS: 2

CIGAR: 3M1D2M1I1M

How to read?

→ 3M: 3 matches, 1D: 1 deletion, 2M: 2 matches, 1I: 1 insertion, 1M: 1 match

Op	BAM	Description	Consumes query	Consumes reference
М	0	alignment match (can be a sequence match or mismatch)	yes	yes
I	1	insertion to the reference	yes	no
D	2	deletion from the reference	no	yes
N	3	skipped region from the reference	no	yes
S	4	soft clipping (clipped sequences present in SEQ)	yes	no
Н	5	hard clipping (clipped sequences NOT present in SEQ)	no	no
Ρ	6	padding (silent deletion from padded reference)	no	no
=	7	sequence match	yes	yes
Х	8	sequence mismatch	yes	yes

H can only be present as the first and/or last operation.

S may only have H operations between them and the ends of the CIGAR string.

Where does the duplication come from?

→ Library duplicates cause by PCR/ Optical duplicates occurred in sequencing

5. Variant calling

Joint analysis empowers discovery

Single genome in isolation: almost never useful

Family or population data add value information

- → Rarity of variants
- → De novo mutations
- → Ethnic background

Note: After multi-sample VCF, the quality score will be higher because it combines information from samples as illustrated above.

Exercise (UReply): Which will affect the variant calling step?

- A. Fastq file format
- **B.** Pre-processing quality control
- C. GWAS corrected p-value
- D. VCF file format

6. Genome-wide association studies (GWAS)

- ➔ Trying to determine whether specific variants in many individuals can be associated with a trait (disease)
- ➔ Bonferroni correction

Given a 3.5 million SNPs, it we use p = 0.05. Then, the probability of the result being correct would be $(1 - 0.05)^{3.5 \text{ millions}}$, which is almost zero. This means at least one testing result is wrong.

Therefore, we need to adjust p-value <u>p-value = p-value/ number of tests</u> e.g. we have 1 million SNPs to test

Adjusted p-value = $\frac{0.05}{1000000}$ = 5 * 10⁻⁸