

Genomics analysis

Yu LI (李煜)

Thursday, 31 October 2024

liyu95.com

liyu@cse.cuhk.edu.hk

Department of Computer Science and Engineering (CSE)

The Chinese University of Hong Kong (CUHK)

Gene enrichment analysis

A biological pathway is a series of interactions among molecules in a cell that leads to a certain product or a change in a cell. Such a pathway can trigger the assembly of new molecules, such as a fat or protein. Pathways can also turn genes on and off, or spur a cell to move

➤ KEGG pathway database

> Each pathway contains a set of genes

By experiments, researchers identified 213 genes associated with type-II diabetes

Question: how to identify pathways related with type-II diabetes?

What is Fisher's exact test?

Fisher's exact test is a statistical significance test used in the analysis of contingency tables

↔ Why is it called exact test?

 \rightarrow P-value can be calculated exactly from the table

Recall t-test

 \succ We calculate a t-value

> Based on a distribution, we get the p-value normal distribution

$$\bigstar p = \frac{\binom{a+b}{a}\binom{c+d}{c}}{\binom{a+b+c+d}{a+c}} = \frac{(a+b)!(c+d)!(a+c)!(b+d)!}{a!b!c!d!(a+b+c+d)!}$$

In gene Not in gene Total set set 100 (a) 9100 In pathway 9000 (b) Not in pathway **113 (c) 11000** (d) 11113 213 20213 Total 20000

a!b!c!d!(a+b+c+d)!

What is cancer?

Cancer is a disease in which some of the body's cells grow uncontrollably and spread to other parts of the body

© 2014 Terese Winslow LLC U.S. Govt. has certain rights

How do we study cancer?

Cancer is usually believed to be a genomic disease

So, we will use genomics/multi-omics methods to study it

Genome/Epigenome/Transcriptome/Proteome/Metabolome

Different types of genomic variants

Variant calling in more detail

CIGAR summarizes alignment structure

CIGAR = Concise Idiosyncratic Gapped Alignment Report

What you are expected to know from this part

The reasons that we need to do the steps

> For example, why we would like to remove the duplicates

The ability to read the records in those files

> Given an alignment, you should be able to convert it into a CIGAR string

> Given a VCF record, you should know what has been changed

Mutation

mutation

How different factors affect the quality of the mapping and the variant calling

Concer

- **Errors VS** variants
- > Duplicates
- >Depth/coverage
- ➤ Sequence quality

Bonferroni correction

Adjusted p-value = p-value/number of tests

Suppose we have 1 million SNPs to test Adjusted p-value = $\frac{0.05}{1,000,000}$ Adjusted p-value = $5 * 10^{-8}$

> Decrease Type I error rates (FP) Increase Type I error rates (FN)

Today's agenda

RNA-seq

➤Gene fusion---structural variant

Epigenome

➢Peak calling

RNA-seq data analysis

Genomics

Recall one question

What if there are two same mappings of the short reads to the genome sequence? how can we decide which section of the genome should it map to?

Transcription, splicing and translation of a eukaryotic gene

Mapping spanning splice junctions

The mapping algorithm should be modified slightly. But it's helpful for identifying gene fusion.

What is gene fusion?

The first fusion gene was described in cancer cells in the early 1980s

Novel gene formed by fusion of two distinct wild type genes

In cancer: produced by somatic genome rearrangements

Gene fusion is a specific kind of structural variant related to cancer

RNA-seq for gene fusion detection

Break-points are in introns We need whole genome sequencing Whole exome sequencing is not enough

Detecting fusion in RNA-seq requires much less sequencing than WGS, especially with long reads

Genomics

Why can it be detected by RNA-seq?

Lecture 16-17

People study cancer at multiple levels

Nature Reviews | Genetics

Genomics

Ritchie et al., 2015, Nature Review Genetics

Today's agenda

RNA-seq

➤Gene fusion---structural variant

Epigenome

➢Peak calling

Sequencing protocols

The overall data analytics pipeline for epigenomics

Genomics

Yu Li

Nakato et. al., 2021, Methods

Peak calling

Peak calling

Peak calling output-BED file

Browser Extensible Data (BED) format

≻Chromosome

≻ Start

≻End

►Label

▶...

track	name="ItemRGB	Demo" descript	tion="It	em RGB	dem	onstration"	visibility=2	itemRgb="On"
chr7	127471196	127472363	Pos1	0	+	127471196	127472363	255,0,0
chr7	127472363	127473530	Pos2	0	+	127472363	127473530	255,0,0
chr7	127473530	127474697	Pos3	0	+	127473530	127474697	255,0,0
chr7	127474697	127475864	Pos4	0	+	127474697	127475864	255,0,0
chr7	127475864	127477031	Neg1	0	-	127475864	127477031	0,0,255
chr7	127477031	127478198	Neg2	0	-	127477031	127478198	0,0,255
chr7	127478198	127479365	Neg3	0	_	127478198	127479365	0,0,255
chr7	127479365	127480532	Pos5	0	+	127479365	127480532	255,0,0
chr7	127480532	127481699	Neg4	0	-	127480532	127481699	0,0,255

The overall data analytics pipeline for epigenomics

Genomics

Yu Li

Nakato et. al., 2021, Methods

The entire detailed pipeline (ATAC-seq as an example)

https://www.encodeproject.org/pipelines/ENCPL787FUN/ Genomics

Histone marks and chromatin accessibility

To make you awake

https://ureply.mobi/teacher

Take-home message

Variant calling pipeline

- ➤ Reasons for the steps
- ➤ File interpretation
- ➤ Factors affect variant calling

↔GWAS

➤P-value correction

- ✤Gene fusion
 - Definition
 - ➢RNA-seq can detect it

Epigenomics

Gene expression regulation: structure and environment

Data analytics pipeline

Potential projects-4,5,6

✤4. Genetic variant calling pipeline

5. Epigenetic data processing pipeline

↔6. Gene fusion detection pipeline

Resources

https://www.ebi.ac.uk/training/materials/cancer-genomics-materials/

GATK workshop slides: <u>https://drive.google.com/drive/folders/1y7q0gJ-ohNDhKG85UTRTwW1Jkq4HJ5M3</u>

GATK workshop video: <u>https://www.youtube.com/watch?v=sM9cQPWwvn4</u>

GWAS workshop: <u>https://www.youtube.com/watch?v=xw419NKqMqw</u>

Epigenetics: <u>https://www.youtube.com/watch?v=IAu44Bk0aSs</u>

https://www.encodeproject.org/atac-seq/

Post-lecture survey

https://forms.gle/dRgK23XzEfhThDed8

Next time

Single-cell RNA-seq

Thank you!

Yu LI (李煜)

liyu95.com

liyu@cse.cuhk.edu.hk

The Artificial Intelligence in Healthcare (AIH) Group Department of Computer Science and Engineering (CSE) The Chinese University of Hong Kong (CUHK)