Protein-RNA/ DNA & Deep Learning

Protein-RNA/ DNA Interaction - Motif Analysis Al vs Machine learning vs Deep Learning Deep Neural Network

Last Lesson Recaps/ Outline:

- Single-cell sequencing & analysis?
- How is single-cell sequencing done?
- Gene Expression Matrix (Read)?
- Challenges in single-cell data analytics and solutions?
- Visualisation of a large matrix of gene expression data (t-SNE)?

Protein-RNA/ DNA Interaction - Motif Analysis

• Motif: recurring pattern/ element within the dataset

• Molecular biology: the preference pattern for DNA/ RNA/ protein sequence

Table 2: Position Count Matrix.

- 1. Excess RNA is introduced to tagged protein (Epitope-tagged RBP)
- 2. Designated RNA will bind with the tagged protein
- 3. Excess, non-binding RNA is eluted (washed away)
- 4. Protein is removed from the target RNA
- 5. RNA is sequenced, aligned and analysed for motif

• Sequence Alignment to motif

Table 1: Starting sequences.

#

1

2

3

4

5

6

Sequence 2 3 Position 1 4 5 6 AAGAAT Α 0 5 5 4 ATCATA 6 4 AAGTAA С 0 0 $2 \quad 0 \quad 0 \quad 0$ AACAAA \mathbf{G} $0 \quad 0 \quad 3 \quad 0 \quad 0 \quad 0$ ATTAAA Т 0 21 1 1 2AAGAAT

Table 3: Position Probability Matrix.

Position	1	2	3	4	5	6
A	1.00	0.67	0.00	0.83	0.83	0.66
С	0.00	0.00	0.33	0.00	0.00	0.00
G	0.00	0.00	0.50	0.00	0.00	0.00
Т	0.00	0.33	0.17	0.17	0.17	0.33

- 1. Alignment of sequence (Table 1: First base is always A; Last base is either A or T)
- 2. Position Counting (Table 2)

3. Turn the Position Count Matrix into the Probability Matrix (Table 3)

AI vs Machine learning vs Deep Learning

• Why do we care about health data?

- For accurate diagnosis
- Needed to train/ deep learning for more accurate disease screening
- Al vs Machine learning vs Deep Learning
 - Artificial Intelligence(AI): Any techniques that mimic human behaviour
 - eg. Robot (fixed instructions)
 - **Machine Learning (ML):** A subset of AI; perform a specific task without instructions; relying on patterns from the data

eg. Self-driving car (No explicit instruction)

• Deep Learning (DL): A subset algorithms of ML; multi-layer neural networks

Deep Neural Network

Problem of Logistic regression

· Relationships among variables are much more complicated/ nonlinear

• Solution: Deep Neural Networks

- Increase the number of nodes, layer/ Add non-linear functions
- Each node is still supported by logistic regression (Output of layer 1 = Input of layer 2)
- Developing a fully-connected layers