BMEG 3105

Fall 2022

Data analytics for personalized genomics and precision medicine

Course introduction

Lecturer: Yu LI (李煜) from CSE

Liyu95.com, liyu@cse.cuhk.edu.hk

Monday, 5 September2022

Outline of lecture

I. Recap from last lecture

- A. Data cleaning
- B. Data exploration
- C. Clustering
- D. 0 VS missing value

II. Taday's agenda

- A. Similarity and dissimilarity Measurement
 - a) Identity
 - b) Measurement methods
 - 1. Cosine similarity If and are two vectors, then
 - 2. Correlation
 - 3. Euclidean distance
 - 4. Minkowski distance
 - 5. Mahalanobis distance (Advanced)
- B. Hierarchical clustering
 - a) Identity
 - b) Steps

III. Self-study material

- A. Data mining
- B. programming

I. Recap from last lecture

A. Data cleaning

- a) Denoise data (if applicable)
- b) Remove outliers
- c) Handling missing data
- d) Remove duplicates
- e) Categorical data encoding
- f) Data normalization

B. Data exploration

- a) Summary statistics:
 - Location: mean and median;
 - Spread: range, variance, percentiles;
 - Frequency: mode
- b) Visualization (distribution and trend)
 - Histogram
 - Box plots

C. Clustering

- a) Datato be clustered
- b) Similarity measurement
- c) Clustering algorithm (the executive procedure)

D. 0 VS Missing value

- 0 is informative
- Missing value means we do not have the information

II. Today's agenda

A. Similarity and dissimilarity measurement

a) Identity Similarity

- Numerical measure of how alike two data objects are
- Higher when objects are more alike
- Often falls in the range [0,1]

Dissimilarity (distance)

- Numerical measure of how different are two data objects
- Lower when objects are more alike
- Minimum dissimilarity is often 0
- Upper limit varies

b) Measurement Methods

- Cosine similarity
 If d1 and d2 are two vectors, then,
 > cos(d₁, d₂) = d₁ ⋅ d₂/(|d₁|*|d₂|)

 Where ⋅ indicate vector dot product and |d| is the length of the vector d
- 2. Correlation

Correlation measures the linear relationship between objects

$$ho_{X,Y} = \mathrm{corr}(X,Y) = rac{\mathrm{cov}(X,Y)}{\sigma_X\sigma_Y} = rac{\mathrm{E}[(X-\mu_X)(Y-\mu_Y)]}{\sigma_X\sigma_Y}$$

3. Euclidean distance

$$Ed(\mathbf{p}, \mathbf{q}) = \sqrt{\sum_{k=1}^{m} (p_k - q_k)^2}$$

Where m is the number of dimensions (attributes) and p_k and q_k are, respectively, the k-th attributes (components) or data objects p and q.

(Normalization is necessary, if scales of different dimension differ)

4. Minkowski distance

Minkowski Distance is a generalization of Euclidean Distance

$$dist(\mathbf{p}, \mathbf{q}) = \left(\sum_{k=1}^{m} |p_k - q_k|^r\right)^{\frac{1}{r}}$$

Where r is a parameter, m is the number of dimensions (attributes), and p_k and q_k are, respectively, the k-th attributes (components) or data objects p and q.

There are 3 cases:

• Case 1: r =1. City block (Manhattan, taxicab, L₁ norm) distance. A common example of this is the Hamming distance, which is just the number of bits that are different between two binary vectors.

$$dist(p,q) = \sum_{k=1}^{m} |pk - qk|$$

- Case 2: r =2. Euclidean distance
- Case3: $r \rightarrow \infty$. "supremum" (L_{max} norm, L_{∞} norm) distance. This is the maximum difference between any component of the vectors

$$dist(p,q) = \left(\sum_{k=1}^{m} a_k^{\infty}\right)^{\frac{1}{\infty}}$$

Which means the maximum absolute value among all the distances for each pair.

5. Mahalanobis distance (Advanced) Calculating distance considering the data distribution

Mahalanobis distance

mahalanobis
$$(\mathbf{p}, \mathbf{q}) = (\mathbf{p} - \mathbf{q})^T \Sigma^{-1} (\mathbf{p} - \mathbf{q})$$

*****Where \sum is the covariance matrix

How to calculate the inverse of the covariance matrix?

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
$$= \frac{1}{10} \begin{bmatrix} 6 & -7 \\ -2 & 4 \end{bmatrix}$$
$$= \frac{1}{10} \begin{bmatrix} 6 & -7 \\ -2 & 4 \end{bmatrix}$$
$$= \begin{bmatrix} 0.6 & -0.7 \\ -0.2 & 0.4 \end{bmatrix}$$

B. Hierarchical clustering

a) Identity

- Producesa set of nested clusters organized as a hierarchical tree
- Can be visualized as adendrogram. A tree like diagram that records the sequences of merges
- They may correspond tomeaningful taxonomies. For example, Gene clusters, phylogeny reconstruction, animal kingdom...

b) Steps

Step1: Compute the Similarity or Distance matrix. (Use the methods mentioned above)

Step2: Let each data point be a cluster.

Step3: Merge the two closest clusters. (e.g. The clusters with the largest correlation)

Step4: Update the similarity or distance matrix. (e.g. Replaced with a larger correlation)

Step5: Repeat Step3&4 until only a single cluster remains.

Example:

1) Computer the similarity by correlation.

Gene	wt	mutant_1	mutant_2	mutant_3
At4g35770	1.5	3	3	1.5
At1g30720	4	7.5	7.5	5
At4g27450	1.5	1	1	1.5
At2g34930	10	25	23	15
At2g05540	1	1	2	1

2) Now we get the distance matrix. Find the largest correlation, which means the shortest distance. Here we get gene2&4. Then combine gene2&4.

		At4g35770	<mark>At1g30720</mark>	At4g27450	<mark>At2g34930</mark>	At2g05540
	At4g35770					
Г	At1g30720	0.9733				
	At4g27450	-1	-0.9733			
Ч	At2g34930	0.9493	0.9909	-0.9493		
	At2g05540	0.5774	0.562	-0.5774	0.4528	

3) After merging gene2&4, we need to update the distance matrix. We update all values related to gene2&4 by a larger correlation, which means a shorter distance as well.

	At4g35770	<mark>At1g30720</mark>	At4g27450	At2g34930	At2g05540
At4g35770					
At1g30720	0.9733				
		-0.9733			
At4g27450	-1	->-0.9493			
	0.9493				
At2g34930	->0.9733		-0.9493		
				0.4528	
At2g05540	0.5774	0.562	-0.5774	->0.562	

4) After updating the matrix, find the largest correlation again. Here we find "0.9733" so we choose gene 3 to combine with gene2&4.

		At4g35770	At1g30720	At4g27450	At2g34930	At2g05540
	At4g35770					
r	At1g30720	0.9733				
l	At4g27450	-1	-0.9493			
ι	At2g34930	0.9733		-0.9493		
	At2g05540	0.5774	0.562	-0.5774	0.562	

5) After Merging gene 1, we update the values with the larger correlation again.

		At4g35770	At1g30720	At4g27450	At2g34930	At2g05540
	At4g35770					
ſ	At1g30720					
		-1				
	At4g27450	->-0.9493	-0.9493			
ι	At2g34930			-0.9493		
			0.562		0.562	
	At2g05540	0.5774	->0.5774	-0.5774	->0.5774	

6) Repeat steps, until only one single cluster (gene 3) remains.

		At4g35770	At1g30720	At4g27450	At2g34930	At2g05540
	At4g35770					
Node2	At1g30720					
Node1	At4g27450	-0.5774	-0.5774			
Node3	At2g34930			-0.5774		
	At2g05540			-0.5774		

III. Self-learning Materials

A. Data mining: (Introduction to data mining: Chapter 2.4& Chapter 8)

- K-means clustering
- Density-based clustering
- How to determine the number of clusters
- How good is your clustering (lecture 8-9)

B. Programming: (Scikit-learn)

https://scikit-learn.org/stable/ClusteringYu LiLecture6-39

https://scikit-

<u>learn.org/stable/auto_examples/cluster/plot_agglomerative_dendrogram.html#sphx-glr-auto-examples-cluster-plot-agglomerative-dendrogram-py</u>