BMEG 3105

Data analytics for personalized genomics and precision medicine Lecture 9: Clustering and classification performance evaluation

Lecturer: Yu LI

Scriber: Ng Tsoi Yin Wednesday, 3 October 2022

Outline of the Lecture:

- ✤ Performance Evaluation
- Cross-Validation
- Multi-class Classification
- Clustering Evaluation

Content:

✤ Training

- ➤ What is training ?
 - To get w_w, w_w, w₀
 - To make model fit the training data

• To make
$$\frac{1}{1+e^{-(w_hH+w_wW+w_0)}} \ge 0.5$$
 correct

 $\succ \quad Y^{\text{output}} = \frac{1}{1 + e^{-(w_h H + w_w W + w_0)}}$

- ➢ Loss function L
 - Loss function = $(Y^{output} Y)^2$
 - Example: Data from P1-P4

Person	Height	Weight	Gender
P1	0.625	0.875	М

• For P1,

•
$$L = (Y^{\text{output}} - Y)^2 = (1 - \frac{1}{1 + e^{-(w_h H + w_w W + w_0)}})^2$$

- In a whole, $L = \sum_{P_1}^{P_4} (Y^{output} Y)^2$
- L = the smaller, the better

Gradient descent algorithm

- > Aim: fine smallest value for L using different values of w
- ➤ Step 1: initialise w_w, w_w, w₀

Step 2: For each data (P1,P2,P3,P4)

Calculate Y^{output} Update new weights New w_i = w_i+ Δ w_i Δ w_i = 2 α (Y - Y^{output}) $\frac{\partial Y^{output}}{\partial w_i}$, α is a constant Repeat until no update

♦ Performance evaluation -binary classification evaluation

- ▶ Purpose: pinpoint strong points and weak points of one method → model selection
- Method: confusion matrix

	Predicted class			
		Class=Yes	Class=No	
Actual class	Class=Yes	a(TP)	b(FN)	
	Class=No	c(FP)	d(TN)	

$$\blacktriangleright \quad \text{Accuracy} = \frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

- Higher accuracy, better the classifier is
- Exception: when there is imbalanced classes

Precision =
$$\frac{a}{a+c}$$
 Recall = $\frac{a}{a+b}$ F1 score = $\frac{2(precision)(recall)}{precision+recall}$

Balanced accuracy = 0.5($\frac{TP}{TP+FN} + \frac{TN}{TN+FP}$)

* Cross-validation

- > KNN
 - Standard procedure
 - After chosen distance metric and K,
 - 1. Normalization
 - 2. Compute distances
 - 3. Identify the K most similar data
 - 4. Take their class out and find the mode class
 - Good K = good prediction accuracy
 - Problem: no label for testing data

Solution: use part of training data as testing data (use each part one by one and calculate the average)

- Can use L_{∞} for convenience
- Cross-fold validation
 - Procedure to measure the performance of models
 - N-fold cross-validation:

Step 1: randomly partition data into n disjoint subsets

Step 2: for i=1 to n,

Validaton data =i-th subset

 $H \leftarrow$ classifier trained except validation data

Accuracy (i) = accuracy of h

Step3: final accuracy = mean of n recorded accuracies

✤ Multi-class classification

- Consider each class as binary classification problem
- Aggregate multiple values into one value:
- $\blacktriangleright \text{ Macro-average} = \frac{\text{sum of accuracy of each class}}{\text{number of classes}}$
- $\blacktriangleright \text{ Micro-average} = \frac{\text{sum of (accuracy*number of data of the class)}}{\text{number of data}}$

Clustering evaluation (different from classification !!)

- Messy classification can be a good clustering
- Should be evaluate a pair of cells
- > Rand index $R = \frac{a+d}{a+b+c+d} = \frac{a+d}{Number of all pair combinations}$
- > Number of pairs = $\binom{n}{2} = \frac{n(n-1)}{2}$