BMEG 3105

Data analytics for personalized genomics and precision medicine Dimension reduction

Lecturer: Yu LI (李煜) from CSE

Liyu95.com, liyu@cse.cuhk.edu.hk

Wednesday, 12 October 2022

• Expected outcomes:

- 1. Dimension reduction
- 2. Further arrangement
- 3. Neural networks

1. Dimension reduction:

Reasons to use feature selection and dimension reduction

a. Biodata can be huge, noise, unrelated, and duplicated

- Irrelevant genes and highly correlated genes cannot be included in data analysis
- Pathways are formed when we combine some genes together into one value which is much useful
- Use feature selection and dimension reduction to solve the above problems

b. Flow diagram of performing the feature selection and dimension reduction

c. Benefits of feature selection and dimension reduction

- Data compression: efficient storage & retrieval
- Improve prediction performance: remove unrelated performance
- Understand the prediction results: to know what genes are related to cancer prediction
- Facilitate data visualization: understand the distance between cells visually

Feature selection

a. Steps

- Choose the best subset genes from all the genes
- Feature ranking
- Feature subset selection: Filter and Wrapper

b. Best subset

- i. Filter
- Classification performance is not involved in the selection loop
- Variance thresholds: Features with a higher variance contain more useful information e.g., Age, Height
- Information gain: Features should be different
- ii. Wrapper
 - Using the classification performance to guide selection
 - Computational expensive
 - Recursive feature elimination
 - Sequential feature selection

	G1	G2	G3	G4	Cancer
S1	10	2	6	8	Yes
S 2	10	3	7	8	Yes
S 3	10	4	8	6	No
S4	10	5	9	5	No

Ways to choose wrapper

1. No feature

2. Find the first best feature using cross-fold validation

3. Add the second feature using crossfold Validation

4. ...

5. Until the new feature does not improve the performance

Feature extraction

- a. Steps
- Extract new features by linear or non-linear combination of the original features e.g., New feature = Gene 1 + Gene 2
- New features may not have physical interpretation/meaning (usually for non-linear)
- PCA, SVD, Isomap, LLE, CCA, et. al.

- b. Principal components analysis (PCA)
 - i. Concepts
 - A two-dimensional scatter of points that show a high degree of correlation
 - ii. Steps
 - We first normalize each feature to make the average of each feature 0. Then, we get X'
 - ↔ Then, we calculate the covariance matrix of X'

$$\Sigma = \frac{1}{n-1} X'^T X', \Sigma: a \ d \ by \ d \ matrix$$

- \checkmark Find the eigenvectors and eigenvalues of Σ
- * M eigenvectors with the M largest eigenvalues
 - Principal components
- Project the data to the M eigenvectors' direction

$$\succ \hat{X} = X'P$$

Example:

1. Original matrix

Х

X1	1	1	1
X2	2	2	2
Х3	3	3	3

2. Normalization

X	\mathbf{x}	y	え
X1	1	1	1
X2	2	2	2
Х3	3	3	3
avg	2	2	V

Step2	X	<u> </u>	1 2	X1	-1	-1	-1
X_1	1-1=1	1-2=-1	1 - 2 = -1	X2	0	0	0
X2	2-220	2-2=0	3-2=1	Х3	1	1	1
X3	5-0-1	5-2-1		Χ'			

3. Calculate the covariance

- 4. Calculate eigenvalue and eigenvector [eigenvalue] [eigenvector]
 - $$\begin{split} \Sigma * V &= \lambda * V \\ |\Sigma \lambda I| &= 0 \end{split} \qquad \lambda_1 = 3 \qquad V_1 = \begin{bmatrix} \frac{\sqrt{3}}{3} \\ \frac{\sqrt{3}}{3} \\ \frac{\sqrt{3}}{3} \end{bmatrix} \qquad \lambda_{2,3} = 0 \qquad V_{2,3} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \\ \begin{vmatrix} 1 \lambda & 1 & 1 \\ 1 & 1 \lambda & 1 \\ 1 & 1 & 1 \lambda \end{vmatrix} = 0 \\ \begin{pmatrix} (1 \lambda)^3 + 1 + 1 (1 \lambda) \\ (1 \lambda) (1 \lambda) = 0 \end{aligned}$$

$$\lambda = 3 \text{ or } \lambda = 0$$

5. Project

$$P = \begin{bmatrix} \frac{\sqrt{3}}{3} & 0\\ \frac{\sqrt{3}}{3} & 0\\ \frac{\sqrt{3}}{3} & 0\\ \frac{\sqrt{3}}{3} & 0 \end{bmatrix} \qquad \hat{X} = X'P = \begin{bmatrix} -1 & -1 & -1\\ 0 & 0 & 0\\ 1 & 1 & 1 \end{bmatrix}^* \begin{bmatrix} \frac{\sqrt{3}}{3} & 0\\ \frac{\sqrt{3}}{3} & 0\\ \frac{\sqrt{3}}{3} & 0 \end{bmatrix} = \begin{bmatrix} -\sqrt{3} & 0\\ 0 & 0\\ \sqrt{3} & 0 \end{bmatrix}$$

X1	$-\sqrt{3}$	0
X2	0	0
Х3	$\sqrt{3}$	0
Â		•

2. Further arrangement:

3. Neural networks:

Logistic regression (LR)

- a. Steps
 - i. Logistic function

$$\frac{1}{1+e^{-(w_h H + w_w W + w_0)}} \ge 0.5$$

ii. Training

To get w_h and w_w , and w_0

iii. Testing

- run the formula

- b. Problems as classification
- the relationship among different variables within the image may be much more complicated than simple linear combination
- The model capacity is not enough
- Underfitting
- c. LR as a neural network
 - i. Flow diagram

 $Y^{output} = \frac{1}{1 + e^{-(w_h H + w_w W + w_0)}}$

- ii. Problems
 - The relation between the output and input may be nonlinear
 - The relation between the output and input can be very complex
- iii. Solutions to solve the problems
 - Increase the number of nodes
 - Increase the number of layers
 - Add non-linear function
 - Change LR to deep neural networks
- d. LR as deep neural networks
 - i. Concepts
 - Fully connected layers
 - A general function approximator
 - We can approximate any function (relation) if we have enough nodes and layers
 - Universal approximation theorem
 - The function is much more complicated, and the number of parameters is very large
 - We may use it resolve complex problems with a huge amount of data
 - ii. Visualization of the internal nodes

Feature extraction

Extract new features by linear or non-linear combination of the original features

- New feature = Gene 1 + Gene 2
- Dog hoof = f(raw pixels)
- New features may not have physical interpretation/meaning (usually for non-linear)

iii. Hidden layer

- Calculation of each internal node

- Number of hidden layers Product of the numbers of each layer + numbers of bias

Parameters: 4*3+4 = 16

e. FS and DR in Python i. Tools: Scikit-learn