Single-Cell RNA-seq

Epigenetics

- Gene expression regulation: structure and environment
- Data analytics pipeline

Single-cell RNA-seq

- Why single cell?
- What is single-cell RNA-seq?
- How to get the single-cell RNA-seq data?

RUNX

Single-cell RNA-seq data analytics

Epigenetics – Peak Calling

Statistical testing: Peak shape VS random background

Peak Calling Output – BED file

Browser Extensible Data (BED) format

		track	name="ItemRGBD	emo" descript	ion="It	em RGB	demo	nstration"	visibility=2	itemRgb="0n"
-	Chromosome	chr7	127471196	127472363	Pos1	0	+	127471196	127472363	255,0,0
		chr7	127472363	127473530	Pos2	0	+	127472363	127473530	255,0,0
-	Start	chr7	127473530	127474697	Pos3	0	+	127473530	127474697	255,0,0
		chr7	127474697	127475864	Pos4	0	+	127474697	127475864	255,0,0
-	End	chr7	127475864	127477031	Neg1	0	-	127475864	127477031	0,0,255
		chr7	127477031	127478198	Neg2	0	-	127477031	127478198	0,0,255
-	Label	chr7	127478198	127479365	Neg3	0	-	127478198	127479365	0,0,255
	20.001	chr7	127479365	127480532	Pos5	0	+	127479365	127480532	255,0,0
-		chr7	127480532	127481699	Neg4	0	-	127480532	127481699	0,0,255

...

-

Gene
Transcription factor

sase Tn5

Nucleo

Original Shift (s-bp) xtend (2s-bp)

-

1

The Overall Data Analytics Pipeline for Epigenetics

What is Single-Cell Analysis?

Single cell sequencing examines the sequence information from individual cells with optimized nextgeneration sequencing (NGS) technologies, providing a higher resolution of cellular differences and a better understanding of the function of an individual cell in the context of its microenvironment.

What can Single-Cell Sequencing do?

- Understanding heterogeneous tissues
- Identification and analysis of rare cell types
- Changes in cellular composition
- Dissection of temporal changes
- Example of applications:
 - Differentiation Paths
 - Cancer Heterogeneity
 - Neural Cell Classification
 - Embryonic Development
 - Drug Treatment Response

How to do Single-Cell Sequencing?

Single-Cell Data Analytics

Challenges in Single-Cell Data Analytics

- Noise
- Doublet
- Dropout
- Batch Effect

The Gene Expression Matrix

Noise in the Gene Expression Matrix

- The number of genes expressed in the count matrix
- The total counts per cell
- The percentage of counts in mitochondrial genes

Dropout

- A dropout event occurs when a transcript is expressed in a cell but is entirely undetected in its mRNA profile
- Dropout events occurs due to low amounts of mRNA in individual cells
- Trade-off: given the same budget, more cells, more dropouts
- Missing values
 - Advanced statistical/ML methods

Batch Effect

In molecular biology, a batch effect occurs when non-biological factors in an experiment cause changes in the data produced by the experiment.

Some Approaches to Batch Correction:

- Normalization
- Alignment
- Removing genes correlated with batch
- Regression of residuals with technical covariates
 - Statistical methods
- Latent space representations
 - Machine learning methods

