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. Review last lecture

-Challenges in single-cell data analytics
Noise
Doublet
Dropout
Batch effect

-Visualize gene expression data in 2D
High dimension to 2D

-The process of t-SNE

-Protein binding preference

. Artificial intelligence VS Machine learning VS Deep learning

-Health data
Diagnosing based on the symptom and lab tests
Curing the disease based on the diagnosing results and the patient’s situation
Without the data, doctors cannot diagnose precisely
Al + Health data: Al-assisted disease diagnosing and curing

-Al vs ML vs DL

Artificial Intelligence (Al):
Any techniques which enable computers to mimic human behavior

Machine Learning (ML):
A subset of Al, which effectively perform a specific task without using explicit
instructions, relying on patterns and inference from the data

Deep Learning (DL):
A subset algorithm of ML, which takes advantage of multi-layer neural
networks




-Machine learning tasks

-Unsupervised learning:
-Dimensionally reduction;
-Clustering.

-Supervised learning:
-Classification;
-Regression.

-Reinforcement learning.

-Machine learning algorithms
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3. Deep learning and biomedical imaging

Training data with class

@ { P1, P2, P3, P4 ]

Data to be classified
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-Build models for real-life healthcare problems

Skin lesion image Deep convolutional neural network (Inception v3) Training classes (757) Inference classes (varies by task)

® Acral-lentiginous melanoma i ‘ ‘ '
® Amelanotic melanoma 4 @ 92% malignant melanocytic lesion

@® Lentigo melanoma

]
\ / |
{ o ) Jateoe ) gt :; it 1 ™ | i )
® Blue nevus + ‘ ) .
® Halo nevus 4 © 8% benign melanocytic lesion

Convolution @® Mongolian spot
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AvgPool
MaxPool
Concat

= Dropout

= Fully connected

= Softmax

-Fully-connected networks

Input layer Hidden layers Regression layer

++To resolve complicated problems
¥ Increase the number of nodes
» Increase the number of layers
» Add non-linear function

++Fully-connected layers
» A general function approximator
» We can approximate any function (relation)
if we have enough nodes and layers
» Universal approximation theorem

-The problem of fully-connected networks:
-How to determine the number of nodes and layers
-Storage
-Running time
-Hard to train
-Prior knowledge is ignored
-Overfitting



-Image
Images are different from data matrix----there is spatial information in the

image----we should design models based on that.

-Properties of objects in the images
-Translation invariance: Capture the patch information, no matter where it

1s.
-Locality: Focus on the local regions first; should be aggregated later on.

-Convolutional layers

C3: f. maps 16@10x10
S4: f. maps 16@5x5
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Hierarchical representation learning feature extraction---->
Fully-connected neural networks classification

High level features

Low level features Mid level features

Facial structure

Edges, dark spots Eyes, ears,nose

Conv Layer | Conv Layer 2 Conv Layer 3

Things we can get from CNN: spatial pattern



-Convolution operation

Input Kernel Output

19=0%0+ 1*1 + 2*3 + 3*4
25=0%1+1%2 +2%4 + 3*5§
37=0%3 +1%4 +2%6 + 3*7
43 =0%4 + 1*5 +2%7 + 3*8
How to do convolution:
Share parameters—Alleviate the overfitting issue; detect translation

invariant features; locality.

Output:

-The number of trainable parameters

The number of trainable parameters %

r
he first layer: (3*3+1)*6=60 chanel=1

= chanel number of
loyer 2 fitter




-Flatten layer

Flatten layer

INPUT
32x32

Convolutions

C1: feature maps
6@28x28

C3: f. maps 16@10x10
S4: f,_ maps

S2: f. maps
6@14x1

Subsampling

Convolutions

Subsampl

. More discussion of convolutional layer

-Filter size

Usually 3 by 3 or5by 5
-How to deal with boundary

Padding: add zeros
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The output dimension is the same as the input if:
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-Kernel: 3 by 3, padding: 1 for each edge
-Kernel: 5 by 5, padding: 2 for each edge

-Stride
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-Pooling

Kernel

Max pooling; average pooling.
(Also combined with padding and stride)

Output
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Full connection

Column stride:
Row stride: 3
Row stride: 5



